Algorithm Reliance: Fast and Slow

计算机科学 算法 计量经济学 经济
作者
C. W. Snyder,Samantha Keppler,Stephen Leider
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2023.01989
摘要

In algorithm-augmented service contexts where workers have decision authority, they face two decisions about the algorithm: whether to follow its advice and how quickly to do so. The pressure to work quickly increases with the speed of arriving customers. In this paper, we ask the following. How do workers use algorithms to manage system loads? With a laboratory experiment, we find that superior algorithm quality and high system loads increase participants’ willingness to use their algorithm’s advice. Consequently, participants with the superior algorithm make higher-quality recommendations than those with no algorithm (participants with the inferior algorithm make slightly lower-quality recommendations than those without). However, participants do not necessarily speed up by using algorithms’ advice; their throughput times only decrease compared with the no-algorithm baseline when the system load is high and algorithm quality is superior, although participants would benefit from working faster in all treatments. This happens in part because participants in the high-load, superior-algorithm treatment serve customers more quickly than participants in the other treatments, conditional on using the algorithm. Participants in the high-load, superior-algorithm treatment work especially quickly in later periods as they increasingly default to their algorithm’s advice. Our findings show that algorithms can have benefits for both decision quality and speed. Quality benefits come from workers’ decision to use their algorithms’ advice, whereas speed benefits depend on workers’ algorithm use and the time they spend deliberating about their algorithm use. Ultimately, algorithm quality and system load are mutually reinforcing factors that influence both service quality and especially speed. This paper was accepted by Elena Katok, operations management. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01989 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李新颖给李新颖的求助进行了留言
3秒前
三个哈卡发布了新的文献求助10
5秒前
在下想完成签到 ,获得积分10
5秒前
是但求其爱完成签到,获得积分10
7秒前
葛二蛋完成签到,获得积分10
7秒前
怕黑凤妖完成签到 ,获得积分10
8秒前
等待的夜香完成签到,获得积分10
8秒前
爆米花应助小吉采纳,获得10
9秒前
13秒前
吴寒发布了新的文献求助10
14秒前
111完成签到,获得积分20
16秒前
何景濂完成签到,获得积分10
17秒前
完美世界应助pica采纳,获得10
17秒前
叶一戈发布了新的文献求助30
19秒前
量子星尘发布了新的文献求助10
20秒前
111发布了新的文献求助10
20秒前
木子完成签到 ,获得积分10
22秒前
紧张的如南完成签到,获得积分10
23秒前
赛因斯完成签到,获得积分10
24秒前
天天快乐应助Theodore采纳,获得10
26秒前
26秒前
陈豆豆完成签到 ,获得积分10
29秒前
Nimeide完成签到,获得积分10
29秒前
wen完成签到,获得积分10
30秒前
凡迪亚比完成签到,获得积分10
30秒前
lingua应助cici采纳,获得10
30秒前
32秒前
溯风完成签到 ,获得积分0
35秒前
无花果应助和谐的道之采纳,获得10
35秒前
35秒前
真实的珠发布了新的文献求助200
37秒前
XXX发布了新的文献求助10
39秒前
不一发布了新的文献求助20
39秒前
40秒前
LiuYinglong发布了新的文献求助10
40秒前
SYLH完成签到,获得积分0
42秒前
43秒前
小白狗完成签到,获得积分10
44秒前
红豆完成签到 ,获得积分10
44秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874500
求助须知:如何正确求助?哪些是违规求助? 3416800
关于积分的说明 10700664
捐赠科研通 3141070
什么是DOI,文献DOI怎么找? 1733129
邀请新用户注册赠送积分活动 835783
科研通“疑难数据库(出版商)”最低求助积分说明 782258