Algorithm Reliance: Fast and Slow

计算机科学 算法 计量经济学 经济
作者
C. W. Snyder,Samantha Keppler,Stephen Leider
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:5
标识
DOI:10.1287/mnsc.2023.01989
摘要

In algorithm-augmented service contexts where workers have decision authority, they face two decisions about the algorithm: whether to follow its advice and how quickly to do so. The pressure to work quickly increases with the speed of arriving customers. In this paper, we ask the following. How do workers use algorithms to manage system loads? With a laboratory experiment, we find that superior algorithm quality and high system loads increase participants’ willingness to use their algorithm’s advice. Consequently, participants with the superior algorithm make higher-quality recommendations than those with no algorithm (participants with the inferior algorithm make slightly lower-quality recommendations than those without). However, participants do not necessarily speed up by using algorithms’ advice; their throughput times only decrease compared with the no-algorithm baseline when the system load is high and algorithm quality is superior, although participants would benefit from working faster in all treatments. This happens in part because participants in the high-load, superior-algorithm treatment serve customers more quickly than participants in the other treatments, conditional on using the algorithm. Participants in the high-load, superior-algorithm treatment work especially quickly in later periods as they increasingly default to their algorithm’s advice. Our findings show that algorithms can have benefits for both decision quality and speed. Quality benefits come from workers’ decision to use their algorithms’ advice, whereas speed benefits depend on workers’ algorithm use and the time they spend deliberating about their algorithm use. Ultimately, algorithm quality and system load are mutually reinforcing factors that influence both service quality and especially speed. This paper was accepted by Elena Katok, operations management. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2023.01989 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lz发布了新的文献求助10
2秒前
4秒前
5秒前
Akim应助剑九黄采纳,获得10
6秒前
瘦瘦慕凝完成签到,获得积分10
6秒前
FashionBoy应助平常万言采纳,获得10
6秒前
Akim应助碧蓝满天采纳,获得10
6秒前
7秒前
bkagyin应助耿昊采纳,获得10
7秒前
9秒前
ghhu完成签到,获得积分10
10秒前
11秒前
11秒前
小薯条发布了新的文献求助30
11秒前
小宋完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
糖小白完成签到,获得积分10
14秒前
14秒前
bzlish发布了新的文献求助10
14秒前
亚秋完成签到,获得积分10
14秒前
15秒前
科研通AI6应助Dako采纳,获得10
16秒前
米奇完成签到 ,获得积分10
16秒前
17秒前
平常万言完成签到,获得积分10
17秒前
亚秋发布了新的文献求助10
18秒前
我不理解发布了新的文献求助10
18秒前
18秒前
小二郎应助英俊的白安采纳,获得10
18秒前
19秒前
可爱的函函应助WYX采纳,获得10
19秒前
CipherSage应助bzlish采纳,获得10
20秒前
wang完成签到 ,获得积分10
20秒前
美羊羊发布了新的文献求助10
21秒前
lz完成签到,获得积分10
21秒前
平常万言发布了新的文献求助10
21秒前
23秒前
23秒前
开心的耳机应助ccc采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642700
求助须知:如何正确求助?哪些是违规求助? 4759529
关于积分的说明 15018532
捐赠科研通 4801206
什么是DOI,文献DOI怎么找? 2566533
邀请新用户注册赠送积分活动 1524546
关于科研通互助平台的介绍 1484071