Machine Learning Models Can Predict Tinnitus and Noise-Induced Hearing Loss

耳鸣 听力损失 听力学 医学 噪声性听力损失 逻辑回归 老年性聋 人口 噪声暴露 环境卫生 内科学
作者
Zahra Jafari,Ryan Harari,Glenn Hole,Bryan Kolb,Majid H. Mohajerani
出处
期刊:Ear and Hearing [Lippincott Williams & Wilkins]
卷期号:46 (5): 1305-1316 被引量:5
标识
DOI:10.1097/aud.0000000000001670
摘要

Objectives: Despite the extensive use of machine learning (ML) models in health sciences for outcome prediction and condition classification, their application in differentiating various types of auditory disorders remains limited. This study aimed to address this gap by evaluating the efficacy of five ML models in distinguishing (a) individuals with tinnitus from those without tinnitus and (b) noise-induced hearing loss (NIHL) from age-related hearing loss (ARHL). Design: We used data from a cross-sectional study of the Canadian population, which included audiologic and demographic information from 928 adults aged 30 to 100 years, diagnosed with either ARHL or NIHL due to long-term occupational noise exposure. The ML models applied in this study were artificial neural networks (ANNs), K-nearest neighbors, logistic regression, random forest (RF), and support vector machines. Results: The study revealed that tinnitus prevalence was over twice as high in the NIHL group compared with the ARHL group, with a frequency of 27.85% versus 8.85% in constant tinnitus and 18.55% versus 10.86% in intermittent tinnitus. In pattern recognition, significantly greater hearing loss was found at medium- and high-band frequencies in NIHL versus ARHL. In both NIHL and ARHL, individuals with tinnitus showed better pure-tone sensitivity than those without tinnitus. Among the ML models, ANN achieved the highest overall accuracy (70%), precision (60%), and F1-score (87%) for predicting tinnitus, with an area under the curve of 0.71. RF outperformed other models in differentiating NIHL from ARHL, with the highest precision (79% for NIHL, 85% for ARHL), recall (85% for NIHL), F1-score (81% for NIHL), and area under the curve (0.90). Conclusions: Our findings highlight the application of ML models, particularly ANN and RF, in advancing diagnostic precision for tinnitus and NIHL, potentially providing a framework for integrating ML techniques into clinical audiology for improved diagnostic precision. Future research is suggested to expand datasets to include diverse populations and integrate longitudinal data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Meyako应助xtt采纳,获得10
1秒前
1秒前
可爱的函函应助dddjs采纳,获得10
1秒前
1秒前
依小米完成签到 ,获得积分10
1秒前
爱吃泡芙完成签到,获得积分10
3秒前
花火的拖鞋完成签到,获得积分10
3秒前
lmmcss完成签到,获得积分20
3秒前
Meyako应助zhanghao采纳,获得10
5秒前
梦泊完成签到,获得积分10
5秒前
kk发布了新的文献求助10
5秒前
Allright完成签到,获得积分10
6秒前
lmmcss发布了新的文献求助10
6秒前
fengw420完成签到,获得积分10
6秒前
Samuel98完成签到 ,获得积分10
7秒前
8秒前
8秒前
畅快yig发布了新的文献求助10
9秒前
谢大喵发布了新的文献求助10
10秒前
火星发布了新的文献求助50
11秒前
11秒前
12秒前
汉堡包应助认真向薇采纳,获得10
13秒前
mr_beard完成签到 ,获得积分10
14秒前
14秒前
14秒前
Rain完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
SciGPT应助fanyouxin采纳,获得10
16秒前
lr发布了新的文献求助30
17秒前
小仙女发布了新的文献求助10
17秒前
小龙仔123发布了新的文献求助10
17秒前
小小威廉发布了新的文献求助10
18秒前
19秒前
云子完成签到,获得积分10
19秒前
19秒前
幽默阑悦完成签到,获得积分10
20秒前
慕青应助小糊涂采纳,获得10
20秒前
魔幻的采波完成签到,获得积分10
20秒前
慕青应助sakura采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494750
求助须知:如何正确求助?哪些是违规求助? 4592509
关于积分的说明 14437364
捐赠科研通 4525317
什么是DOI,文献DOI怎么找? 2479362
邀请新用户注册赠送积分活动 1464148
关于科研通互助平台的介绍 1437177