海森伯群
索波列夫空间
简并能级
数学
拉普拉斯算子
群(周期表)
索波列夫不等式
维数(图论)
类型(生物学)
数学物理
多重性(数学)
数学分析
纯数学
物理
量子力学
生物
生态学
作者
Xueqi Sun,Yueqiang Song,Sihua Liang,Binlin Zhang
标识
DOI:10.1142/s1664360722500060
摘要
In this paper, we deal with a class of Kirchhoff-type critical elliptic equations involving the [Formula: see text]-sub-Laplacians operators on the Heisenberg group of the form [Formula: see text] where [Formula: see text] is the [Formula: see text]-sub-Laplacian, [Formula: see text], [Formula: see text] is the horizontal Sobolev space on [Formula: see text]. And [Formula: see text] is the homogeneous dimension of [Formula: see text], [Formula: see text] is a real parameter, [Formula: see text] is the critical Sobolev exponent on the Heisenberg group. Under some proper assumptions on the Kirchhoff function [Formula: see text], the potential function [Formula: see text] and [Formula: see text], together with the mountain pass theorem and the concentration-compactness principles for classical Sobolev spaces on the Heisenberg group, we prove the existence and multiplicity of nontrivial solutions for the above problem in non-degenerate and degenerate cases on the Heisenberg group. The results of this paper extend or complete recent papers and are new in several directions for the non-degenerate and degenerate critical Kirchhoff equations involving the [Formula: see text]-Laplacian type operators on the Heisenberg group.
科研通智能强力驱动
Strongly Powered by AbleSci AI