Global and Local Semantic Completion Learning for Vision-Language Pre-Training

计算机科学 人工智能 自然语言处理 培训(气象学) 计算机视觉 机器学习 物理 气象学
作者
Rong-Cheng Tu,Yatai Ji,Jie Jiang,Weijie Kong,Chengfei Cai,Wenzhe Zhao,Hongfa Wang,Yujiu Yang,Wei Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (12): 11065-11079 被引量:1
标识
DOI:10.1109/tpami.2025.3596394
摘要

Cross-modal alignment plays a crucial role in vision-language pre-training (VLP) models, enabling them to capture meaningful associations across different modalities. For this purpose, inspired by the success of masked language modeling (MLM) tasks in the NLP pre-training area, numerous masked modeling tasks have been proposed for VLP to further promote cross-modal interactions. The core idea of previous masked modeling tasks is to focus on reconstructing the masked tokens based on visible context for learning local-local alignment, i.e., associations between image patches and text tokens. However, most of them pay little attention to the global semantic features generated for the masked data, resulting in a limited cross-modal alignment ability of global representations to local features of the other modality. Therefore, in this paper, we propose a novel Global and Local Semantic Completion Learning (GLSCL) task to facilitate global-local alignment and local-local alignment simultaneously. Specifically, the GLSCL task complements the missing semantics of masked data and recovers global and local features by cross-modal interactions. Our GLSCL consists of masked global semantic completion (MGSC) and masked local token completion (MLTC). MGSC promotes learning more representative global features, which have a great impact on the performance of downstream tasks, while MLTC reconstructs modal-fusion local tokens, further enhancing accurate comprehension of multimodal data. To evaluate the proposed approaches on cross-modal alignment, we develop a validation benchmark called ALIGN-BENCH. Moreover, we present a flexible vision encoder, enabling our model to simultaneously perform image-text and video-text multimodal tasks. Experimental results show that our proposed method obtains state-of-the-art performance on various vision-language benchmarks, such as visual question answering, image-text retrieval, and video-text retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XUU完成签到,获得积分20
1秒前
搞怪元彤完成签到,获得积分10
1秒前
1秒前
sommer12345完成签到,获得积分10
1秒前
求助驳回了Orange应助
1秒前
可以组一辈子乐队吗完成签到,获得积分10
2秒前
邓111111完成签到,获得积分10
2秒前
2秒前
2秒前
强健的洋葱完成签到,获得积分10
2秒前
3秒前
杨怂怂发布了新的文献求助10
3秒前
yxf完成签到,获得积分10
3秒前
CGGBZLX完成签到,获得积分10
4秒前
Lee完成签到,获得积分10
4秒前
4秒前
机智灵薇完成签到,获得积分10
4秒前
星大星完成签到,获得积分20
4秒前
花卷应助韭黄采纳,获得10
4秒前
琴宝爱吃QQ星完成签到,获得积分10
5秒前
5秒前
BareBear应助山与采纳,获得10
6秒前
可爱的函函应助hellocat采纳,获得10
6秒前
6秒前
thynkz应助小四适小鱼儿采纳,获得10
6秒前
三七完成签到,获得积分10
7秒前
Function完成签到,获得积分10
7秒前
邓111111发布了新的文献求助10
7秒前
7秒前
Yeee完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
潜水的桃发布了新的文献求助10
8秒前
深情安青应助科研通管家采纳,获得30
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5596168
求助须知:如何正确求助?哪些是违规求助? 4681295
关于积分的说明 14820231
捐赠科研通 4656508
什么是DOI,文献DOI怎么找? 2535875
邀请新用户注册赠送积分活动 1503640
关于科研通互助平台的介绍 1469938