Interpretable Dynamic Brain Network Analysis With Functional and Structural Priors

先验概率 计算机科学 人工智能 神经影像学 模式识别(心理学) 计算机视觉 贝叶斯概率 神经科学 生物
作者
Sheng‐Rong Li,Qi Zhu,Chunwei Tian,Wei Shao,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (12): 4878-4889 被引量:1
标识
DOI:10.1109/tmi.2025.3584231
摘要

The dynamic functional brain network (DFBN) inherently captures topological changes in brain connectivity pattern during activity, attracting increasing attention for detecting brain disorders. However, most current DFBN analysis methods rely on data-driven modeling and ignore crucial prior knowledge of brain structure and function, resulting in weak interpretability of models. Furthermore, effectively extracting dynamic topological features from DFBN is still a challenging issue, due to its intricate spatio-temporal features coupling. In this paper, we propose an interpretable spatio-temporal tensor graph convolutional network for DFBN analysis. Firstly, by incorporating functional and structural priors into the construction of DBFN, we develop a hierarchical DBFN representation with brain region clustering that effectively captures the spatio-temporal topology among subnetworks. Secondly, we design a tensor graph convolutional network with both intra-graph propagation and inter-graph propagation to simultaneously extract the spatio-temporal features from the hierarchical DFBN. Additionally, we derive a functional subnetwork constraint to enhance the consistency within subnetworks and the differences between subnetworks, which guides the learned features to better reflect the topology prior of the brain network. Finally, self-attention is employed to fuse the learned dynamic topological features of different subnetworks for classification. Experimental results on epilepsy, ADNI and ABIDE datasets demonstrate that our method achieves competitive diagnostic performance and offers network-level interpretability for brain disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助端庄如音采纳,获得10
1秒前
顾矜应助Yuanyuan采纳,获得10
1秒前
啊德哈卡完成签到,获得积分10
1秒前
2秒前
内向含玉完成签到,获得积分10
2秒前
clarkq发布了新的文献求助10
2秒前
lily完成签到,获得积分20
2秒前
2秒前
畅快大象发布了新的文献求助10
2秒前
田田田田完成签到,获得积分10
3秒前
miamikk完成签到 ,获得积分10
3秒前
科目三应助sourggg采纳,获得10
3秒前
领导范儿应助123采纳,获得10
3秒前
虫虫冲呀冲完成签到,获得积分10
3秒前
4秒前
月饼完成签到,获得积分10
4秒前
4秒前
贼吖完成签到 ,获得积分20
4秒前
5秒前
Army616完成签到,获得积分10
5秒前
舒心妙菱发布了新的文献求助10
5秒前
duduguai完成签到,获得积分10
6秒前
yuki完成签到,获得积分10
6秒前
hhhhhh发布了新的文献求助10
6秒前
友好的魔镜完成签到,获得积分10
6秒前
阿刁完成签到,获得积分10
7秒前
zhanghhsnow完成签到,获得积分10
8秒前
8秒前
8秒前
浮游应助kkem采纳,获得10
8秒前
mengzhe完成签到,获得积分10
9秒前
玛卡巴卡发布了新的文献求助10
9秒前
iNk应助bb采纳,获得20
10秒前
tong发布了新的文献求助10
10秒前
dandany完成签到,获得积分10
10秒前
lala完成签到,获得积分10
10秒前
记录吐吐完成签到,获得积分10
11秒前
大个应助kk采纳,获得10
11秒前
YangSY发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511226
求助须知:如何正确求助?哪些是违规求助? 4605908
关于积分的说明 14496262
捐赠科研通 4541043
什么是DOI,文献DOI怎么找? 2488328
邀请新用户注册赠送积分活动 1470437
关于科研通互助平台的介绍 1442823