Multi-Vehicle Collaborative Trajectory Planning in Unstructured Conflict Areas Based on V-Hybrid A*

弹道 计算机科学 运输工程 运筹学 工程类 物理 天文
作者
Biao Xu,Guan Wang,Zeyu Yang,Yougang Bian,Xiaowei Wang,Manjiang Hu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 12722-12735 被引量:2
标识
DOI:10.1109/tits.2024.3383825
摘要

This work deals with the Multi-Vehicle Trajectory Planning (MVTP) problem in unstructured conflict areas. Compared with MVTP on structured roads, the more complex intersection and the more conflicting motions of vehicles, set higher requirements for the real-time of the planner. To address the issue, this work proposes a centralized decision-making distributed planning framework, to generate trajectories for multiple vehicles navigating conflict areas on unstructured roads. In the multi-vehicle collaboration process, vehicles are assigned a priority upon entering the control area, with higher-priority vehicles treated as dynamic obstacles to be avoided. The distributed planning is divided into three stages: 1) trajectory search utilizing Velocity-Hybrid A* (V-Hybrid A*), 2) path optimization with respect to both dynamic and static obstacles, and 3) speed optimization leveraging the convex space created by the initial solution. In the trajectory search of individual vehicles, each expansion node of V-Hybrid A* is given an acceleration to get a coarse trajectory with discrete velocity. Moreover, a box constraint is established to optimize the path of the coarse trajectory. Then, according to the homotopy class provided by the coarse trajectory, speed optimization is carried out to obtain the final single vehicle trajectory. In our simulation experiments, we randomized the generation of numerous vehicles assigned with varied tasks to evaluate the algorithm's effectiveness. Ultimately, real-vehicle experiments substantiated the algorithm's practical feasibility. The results indicate that the proposed method can significantly improve the traffic efficiency in conflict areas and has practical applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉茶完成签到 ,获得积分10
刚刚
Layover完成签到 ,获得积分10
刚刚
刚刚
steady完成签到,获得积分10
刚刚
今后应助dora332211采纳,获得10
1秒前
lanterns发布了新的文献求助30
1秒前
拼搏亦松完成签到,获得积分10
1秒前
1秒前
weerfi发布了新的文献求助30
1秒前
燮老板的账号完成签到,获得积分10
2秒前
liz完成签到,获得积分10
2秒前
2秒前
简忆完成签到,获得积分10
2秒前
星星星醒醒完成签到,获得积分10
2秒前
kong应助HY采纳,获得20
4秒前
chen完成签到,获得积分10
4秒前
4秒前
5秒前
wang完成签到,获得积分10
5秒前
白茶完成签到,获得积分10
5秒前
桃掉烦恼完成签到,获得积分10
5秒前
绿竹完成签到,获得积分10
6秒前
无恙完成签到,获得积分20
6秒前
6秒前
明天就毕业完成签到,获得积分10
6秒前
迷路的天蓉完成签到,获得积分20
7秒前
7秒前
脑洞疼应助晚风采纳,获得10
7秒前
纵马长歌完成签到,获得积分10
7秒前
Pipper完成签到,获得积分10
8秒前
初夏完成签到,获得积分10
8秒前
8秒前
科研通AI5应助zz采纳,获得10
8秒前
罐罐完成签到,获得积分10
9秒前
无奈的天玉完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
Wally完成签到,获得积分10
10秒前
沐沐完成签到,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795794
求助须知:如何正确求助?哪些是违规求助? 3340791
关于积分的说明 10302239
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677651
邀请新用户注册赠送积分活动 805524
科研通“疑难数据库(出版商)”最低求助积分说明 762642