Comparison of Three Machine Learning Algorithms for Retrieving Soil Moisture Information from Sentinel-1A SAR Data in Northwest Shandong Plain, China

中国 算法 滨海平原 遥感 环境科学 计算机科学 地质学 地理 古生物学 考古
作者
C. Hou,Mou Leong Tan,Longhui Li,Zhang Fei
出处
期刊:Advances in Space Research [Elsevier BV]
卷期号:74 (1): 75-88 被引量:1
标识
DOI:10.1016/j.asr.2024.03.047
摘要

Soil moisture (SM) plays a critical role in the growth and management of grain in semi-humid regions. However, little is known about how to integrate satellite data with machine learning to accurately retrieve SM information in these areas. This study compares the capability of three machine learning algorithms, Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN), to extract SM information over the Northwest Shandong Plain using multi-phase dual-polarized Sentinel-1A satellite data. The backscattering coefficients were obtained through standard intensity and phase processing to calculate the SAR indices, and several characteristic parameters were extracted as impact factors using the Cloude-Pottier decomposition. The importance of these factors was analyzed, while the performance of each machine learning algorithm was comprehensively evaluated using the K-fold cross-validation method. The best-performing model was utilized to retrieve the spatio-temporal changes in SM in the study area. The findings indicate the following: (1) The first eigenvalue has the greatest impact on retrieval accuracy, followed by entropy, where the intensity component of Shannon's entropy is more important than its polarization component; (2) The addition of more impact factors does not bring a continuous improvement in model performance, but the optimal factor combinations differ for different machine learning retrieval models; (3) The RF model trained using the IM12 combination demonstrates better performance than SVM and ANN in retrieving SM information, with a coefficient of determination (R2) of 0.55 and a root mean square error of 6.12 vol.% on the validation set. The level of SM in the Yellow River National Wetland Park is higher than that of the surrounding areas, with substantial seasonal changes. Precipitation, temperature, and vegetation significantly influence the regional variations in SM at the macroscopic level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shilong.yang发布了新的文献求助30
1秒前
1秒前
1秒前
.元柏完成签到 ,获得积分10
1秒前
3秒前
豆豆完成签到,获得积分10
3秒前
积极的惜萱完成签到,获得积分10
4秒前
科研通AI5应助参商采纳,获得10
4秒前
田様应助CM230306采纳,获得10
6秒前
自由的飞发布了新的文献求助20
7秒前
7秒前
Pamburger发布了新的文献求助10
7秒前
空禅yew完成签到,获得积分10
7秒前
TAN完成签到,获得积分10
7秒前
充电宝应助学术地瓜采纳,获得10
8秒前
温暖老鼠完成签到,获得积分10
8秒前
8秒前
迦鳞发布了新的文献求助10
9秒前
9秒前
9秒前
15651646629完成签到,获得积分10
10秒前
sdfgsdgs完成签到,获得积分10
10秒前
10秒前
11秒前
江月年发布了新的文献求助10
11秒前
李爱国应助封典采纳,获得10
12秒前
12秒前
丰富广缘发布了新的文献求助10
12秒前
13秒前
13秒前
Lucas应助笑点低慕灵采纳,获得10
13秒前
心灵美的大山完成签到,获得积分10
13秒前
科研通AI5应助爱笑灵竹采纳,获得10
14秒前
卡卡西应助jayliu采纳,获得20
14秒前
莫莫完成签到,获得积分10
14秒前
14秒前
科研通AI5应助乔垣结衣采纳,获得10
14秒前
15秒前
缓冲间发布了新的文献求助30
15秒前
科研通AI5应助iehaoang采纳,获得30
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432