亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Kernel Graph Nonnegative Matrix Factorization

非负矩阵分解 图形核 矩阵分解 子空间拓扑 模式识别(心理学) 图形 拉普拉斯矩阵 核(代数) 聚类分析 计算机科学 特征学习 数学 人工智能 算法 核主成分分析 核方法 理论计算机科学 特征向量 支持向量机 离散数学 量子力学 物理
作者
Rui-Yu Li,Yu Guo,Bin Zhang
出处
期刊:Information [MDPI AG]
卷期号:14 (4): 208-208 被引量:3
标识
DOI:10.3390/info14040208
摘要

Nonnegative matrix factorization (NMF) is an efficient method for feature learning in the field of machine learning and data mining. To investigate the nonlinear characteristics of datasets, kernel-method-based NMF (KNMF) and its graph-regularized extensions have received much attention from various researchers due to their promising performance. However, the graph similarity matrix of the existing methods is often predefined in the original space of data and kept unchanged during the matrix-factorization procedure, which leads to non-optimal graphs. To address these problems, we propose a kernel-graph-learning-based, nonlinear, nonnegative matrix-factorization method in this paper, termed adaptive kernel graph nonnegative matrix factorization (AKGNMF). In order to automatically capture the manifold structure of the data on the nonlinear feature space, AKGNMF learned an adaptive similarity graph. We formulated a unified objective function, in which global similarity graph learning is optimized jointly with the matrix decomposition process. A local graph Laplacian is further imposed on the learned feature subspace representation. The proposed method relies on both the factorization that respects geometric structure and the mapped high-dimensional subspace feature representations. In addition, an efficient iterative solution was derived to update all variables in the resultant objective problem in turn. Experiments on the synthetic dataset visually demonstrate the ability of AKGNMF to separate the nonlinear dataset with high clustering accuracy. Experiments on real-world datasets verified the effectiveness of AKGNMF in three aspects, including clustering performance, parameter sensitivity and convergence. Comprehensive experimental findings indicate that, compared with various classic methods and the state-of-the-art methods, the proposed AKGNMF algorithm demonstrated effectiveness and superiority.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
吴浣发布了新的文献求助10
20秒前
35秒前
kkm发布了新的文献求助10
38秒前
41秒前
9527完成签到,获得积分10
52秒前
53秒前
56秒前
上蹿下跳的猹完成签到,获得积分10
57秒前
59秒前
1分钟前
1分钟前
1分钟前
阿亮完成签到,获得积分10
1分钟前
ding应助石榴汁的书采纳,获得10
1分钟前
1分钟前
阿亮发布了新的文献求助20
1分钟前
研友_VZG7GZ应助吴浣采纳,获得10
1分钟前
1分钟前
Orange应助Dreamchaser采纳,获得10
1分钟前
2分钟前
科研通AI6应助tracer526采纳,获得10
2分钟前
2分钟前
mc小胖羊发布了新的文献求助10
2分钟前
科研通AI6应助tracer526采纳,获得10
2分钟前
2分钟前
冷傲迎梅完成签到 ,获得积分10
2分钟前
Jasper应助tracer526采纳,获得10
2分钟前
mc小胖羊发布了新的文献求助10
3分钟前
3分钟前
3分钟前
罗伊黄发布了新的文献求助10
3分钟前
xiaoyu完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
火星上念梦完成签到,获得积分10
3分钟前
3分钟前
3分钟前
kkm完成签到,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418317
求助须知:如何正确求助?哪些是违规求助? 4534007
关于积分的说明 14143021
捐赠科研通 4450303
什么是DOI,文献DOI怎么找? 2441153
邀请新用户注册赠送积分活动 1432905
关于科研通互助平台的介绍 1410263