亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep CNN-based visual defect detection: Survey of current literature

人工智能 计算机科学 深度学习 机器学习 分割 目视检查 领域(数学分析) 机器视觉 无监督学习 像素 大数据 数据挖掘 数学 数学分析
作者
Shashi Bhushan Jha,Radu F. Babiceanu
出处
期刊:Computers in Industry [Elsevier]
卷期号:148: 103911-103911 被引量:142
标识
DOI:10.1016/j.compind.2023.103911
摘要

In the past years, the computer vision domain has been profoundly changed by the advent of deep learning algorithms and data science. The defect detection problem is of outmost importance in high-tech industries such as aerospace manufacturing and is extensively employed using automated industrial quality control systems. Defect inspection methods can be mainly grouped into manual inspection, traditional computer vision, and modern computer vision inspection. Initially developed two decades ago, the CNN algorithms recently became popular for solving complex machine vision problems, as big datasets and computationally potent hardware became widely available. Deep learning-based methods form the foundation for modern automatic optical inspection methods and can be grouped based on their network connections into two categories: dense networks and sparse networks. Another method for grouping considers the type of learning: supervised learning used primarily for defect classification and segmentation, and unsupervised learning models, which have the potential to overcome the challenges of supervised models such as labeling images and annotating pixels. In addition, pixel-level based segmentation techniques are considered to cover the state-of-the-art methodologies for the automatic optical inspection. Still, both supervised and unsupervised models pose challenges in regards to model training and attaining the expected detection accuracy. Identified open challenges include algorithmic, application, and data processing challenges. By addressing these challenges, in the future, the demand for automated optical inspection is expected to only grow in both industry practice and academic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助Epiphany采纳,获得10
8秒前
桦奕兮完成签到 ,获得积分10
25秒前
CWY发布了新的文献求助50
35秒前
彭于晏应助wdsgkfjhn采纳,获得10
44秒前
飞天大南瓜完成签到,获得积分10
58秒前
终归完成签到 ,获得积分10
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得20
1分钟前
MchemG应助科研通管家采纳,获得20
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
辉辉应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Epiphany发布了新的文献求助10
1分钟前
13633501455完成签到 ,获得积分10
1分钟前
1分钟前
犬来八荒发布了新的文献求助10
1分钟前
1分钟前
Epiphany完成签到,获得积分10
1分钟前
1分钟前
上官若男应助温婉的凝雁采纳,获得10
2分钟前
Alvin完成签到 ,获得积分10
2分钟前
温婉的凝雁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
王玉发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Cherry发布了新的文献求助10
3分钟前
3分钟前
昌莆完成签到 ,获得积分10
3分钟前
3分钟前
冉亦完成签到,获得积分10
3分钟前
搜集达人应助null采纳,获得10
3分钟前
可爱的函函应助香菜肉丸采纳,获得10
3分钟前
4分钟前
平淡映秋发布了新的文献求助10
4分钟前
focus完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091