Deep CNN-based visual defect detection: Survey of current literature

人工智能 计算机科学 深度学习 机器学习 分割 目视检查 领域(数学分析) 机器视觉 无监督学习 像素 大数据 数据挖掘 数学 数学分析
作者
Shashi Bhushan Jha,Radu F. Babiceanu
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:148: 103911-103911 被引量:84
标识
DOI:10.1016/j.compind.2023.103911
摘要

In the past years, the computer vision domain has been profoundly changed by the advent of deep learning algorithms and data science. The defect detection problem is of outmost importance in high-tech industries such as aerospace manufacturing and is extensively employed using automated industrial quality control systems. Defect inspection methods can be mainly grouped into manual inspection, traditional computer vision, and modern computer vision inspection. Initially developed two decades ago, the CNN algorithms recently became popular for solving complex machine vision problems, as big datasets and computationally potent hardware became widely available. Deep learning-based methods form the foundation for modern automatic optical inspection methods and can be grouped based on their network connections into two categories: dense networks and sparse networks. Another method for grouping considers the type of learning: supervised learning used primarily for defect classification and segmentation, and unsupervised learning models, which have the potential to overcome the challenges of supervised models such as labeling images and annotating pixels. In addition, pixel-level based segmentation techniques are considered to cover the state-of-the-art methodologies for the automatic optical inspection. Still, both supervised and unsupervised models pose challenges in regards to model training and attaining the expected detection accuracy. Identified open challenges include algorithmic, application, and data processing challenges. By addressing these challenges, in the future, the demand for automated optical inspection is expected to only grow in both industry practice and academic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助糊涂的丹南采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
思源应助Pendulium采纳,获得10
1秒前
rose完成签到,获得积分10
1秒前
充电宝应助long采纳,获得10
2秒前
无花果应助Cc采纳,获得10
2秒前
lff完成签到,获得积分10
2秒前
李健的小迷弟应助霞霞采纳,获得10
3秒前
3秒前
4秒前
欣喜凡之发布了新的文献求助10
4秒前
今后应助喜悦百川采纳,获得10
4秒前
happiness发布了新的文献求助10
4秒前
4秒前
沉淀淀发布了新的文献求助50
5秒前
Robin发布了新的文献求助20
5秒前
小二郎应助ceo采纳,获得10
6秒前
郭晗完成签到,获得积分10
7秒前
7秒前
荼白完成签到 ,获得积分10
7秒前
明理的天蓝完成签到,获得积分10
7秒前
852应助研友_5476B5采纳,获得10
8秒前
Hello应助动次打次采纳,获得10
8秒前
上官若男应助俏皮巧曼采纳,获得10
8秒前
阿治发布了新的文献求助10
9秒前
斯文的斩发布了新的文献求助10
9秒前
全或无完成签到,获得积分10
9秒前
晚意完成签到,获得积分10
9秒前
10秒前
GG发布了新的文献求助10
10秒前
10秒前
peiqi佩奇完成签到,获得积分20
11秒前
领导范儿应助小魏哥采纳,获得10
11秒前
lzh发布了新的文献求助30
11秒前
13秒前
13秒前
《子非鱼》完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4239435
求助须知:如何正确求助?哪些是违规求助? 3773195
关于积分的说明 11849854
捐赠科研通 3428981
什么是DOI,文献DOI怎么找? 1881887
邀请新用户注册赠送积分活动 933971
科研通“疑难数据库(出版商)”最低求助积分说明 840639