The PIOLab: Building global physical input–output tables in a virtual laboratory

工业生态学 多样性(控制论) 循环经济 计算机科学 建筑 供应链 持续性 环境数据 数据科学 运筹学 环境经济学 生态学 业务 经济 工程类 营销 地理 人工智能 考古 生物
作者
Hanspeter Wieland,Manfred Lenzen,Arne Geschke,Jacob Fry,Dominik Wiedenhofer,Nina Eisenmenger,Johannes Schenk,Stefan Giljum
出处
期刊:Journal of Industrial Ecology [Wiley]
卷期号:26 (3): 683-703 被引量:19
标识
DOI:10.1111/jiec.13215
摘要

Informed environmental-economic policy decisions require a solid understanding of the economy's biophysical basis. Global physical input–output tables (gPIOTs) collate a vast array of information on the world economy's physical structure and its interdependence with the environment, which can help to monitor progress toward a sustainable circular economy. However, building gPIOTs requires dealing with mismatched and incomplete primary data with high uncertainties, which makes it a time-consuming and labor-intensive endeavor. We address this challenge by introducing the PIOLab: A virtual laboratory for building gPIOTs. This represents the newest branch of the industrial ecology virtual laboratory (IELab) concept, a cloud-computing platform and collaborative research environment through which participants can pool resources to assemble individual input–output tables that target specific research questions. To overcome the lack of primary data, the PIOLab builds extensively upon secondary data derived from a variety of models commonly used in industrial ecology. We use the case of global iron-steel supply chains to describe the architecture of the PIOLab and highlight its analytical capabilities. A major strength of the gPIOT is its ability to provide mass-balanced indicators on both apparent/direct and embodied/indirect flows, for regions and disaggregated economic sectors. We present the first gPIOTs for 10 years (2008–2017), covering 32 regions, 30 processes, and 39 types of iron/steel flows. Diagnostic tests of the data reconciliation show a good level of adherence between raw data and the values realized in the gPIOT. We conclude with elaborating on how the PIOLab will be extended to cover other materials and energy flows. This article met the requirements for a Gold-Gold JIE data openness badge described at http://jie.click/badges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无谓完成签到,获得积分10
刚刚
1秒前
尉迟希望应助李雷采纳,获得10
1秒前
fzzf发布了新的文献求助10
1秒前
宇宇宇发布了新的文献求助10
1秒前
害羞中蓝发布了新的文献求助10
1秒前
思思完成签到,获得积分10
1秒前
畅快的草莓完成签到,获得积分10
1秒前
2秒前
负责笑容发布了新的文献求助10
2秒前
小豪完成签到,获得积分10
2秒前
鸡蛋灌饼发布了新的文献求助10
2秒前
小徐完成签到,获得积分20
2秒前
哈尼宝贝完成签到,获得积分10
3秒前
3秒前
評評发布了新的文献求助30
3秒前
3秒前
3秒前
淋雨不好完成签到,获得积分10
3秒前
隐形幻竹发布了新的文献求助20
4秒前
4秒前
iuhgnor发布了新的文献求助10
4秒前
科研绝技发布了新的文献求助10
4秒前
4秒前
害羞的镜子完成签到,获得积分10
5秒前
soso发布了新的文献求助10
6秒前
傅凡桃发布了新的文献求助10
7秒前
jammszs发布了新的文献求助10
7秒前
sasa发布了新的文献求助10
7秒前
上官若男应助灵巧书本采纳,获得10
7秒前
8秒前
hkh发布了新的文献求助10
8秒前
你知道我在等你吗完成签到,获得积分10
9秒前
梅花完成签到,获得积分10
9秒前
9秒前
niuniu发布了新的文献求助10
10秒前
10秒前
吉吉国王完成签到,获得积分10
10秒前
11秒前
大白熊完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071945
求助须知:如何正确求助?哪些是违规求助? 4292467
关于积分的说明 13374776
捐赠科研通 4113406
什么是DOI,文献DOI怎么找? 2252418
邀请新用户注册赠送积分活动 1257312
关于科研通互助平台的介绍 1190103