DeepPSP: A Global–Local Information-Based Deep Neural Network for the Prediction of Protein Phosphorylation Sites

人工神经网络 块(置换群论) 人工智能 接收机工作特性 蛋白质磷酸化 鉴定(生物学) 计算机科学 召回 数据挖掘 模式识别(心理学) 磷酸化 机器学习 数学 生物 生物化学 语言学 植物 几何学 蛋白激酶A 哲学
作者
Lei Guo,Yongpei Wang,Xiangnan Xu,Kian-Kai Cheng,Yichi Long,Jingjing Xu,Sanshu Li,Jiyang Dong
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:20 (1): 346-356 被引量:42
标识
DOI:10.1021/acs.jproteome.0c00431
摘要

Identification of phosphorylation sites is an important step in the function study and drug design of proteins. In recent years, there have been increasing applications of the computational method in the identification of phosphorylation sites because of its low cost and high speed. Most of the currently available methods focus on using local information around potential phosphorylation sites for prediction and do not take the global information of the protein sequence into consideration. Here, we demonstrated that the global information of protein sequences may be also critical for phosphorylation site prediction. In this paper, a new deep neural network model, called DeepPSP, was proposed for the prediction of protein phosphorylation sites. In the DeepPSP model, two parallel modules were introduced to extract both local and global features from protein sequences. Two squeeze-and-excitation blocks and one bidirectional long short-term memory block were introduced into each module to capture effective representations of the sequences. Comparative studies were carried out to evaluate the performance of DeepPSP, and four other prediction methods using public data sets The F1-score, area under receiver operating characteristic curves (AUROC), and area under precision-recall curves (AUPRC) of DeepPSP were found to be 0.4819, 0.82, and 0.50, respectively, for S/T general site prediction and 0.4206, 0.73, and 0.39, respectively, for Y general site prediction. Compared with the MusiteDeep method, the F1-score, AUROC, and AUPRC of DeepPSP were found to increase by 8.6, 2.5, and 8.7%, respectively, for S/T general site prediction and by 20.6, 5.8, and 18.2%, respectively, for Y general site prediction. Among the tested methods, the developed DeepPSP method was also found to produce best results for different kinase-specific site predictions including CDK, mitogen-activated protein kinase, CAMK, AGC, and CMGC. Taken together, the developed DeepPSP method may offer a more accurate phosphorylation site prediction by including global information. It may serve as an alternative model with better performance and interpretability for protein phosphorylation site prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXH完成签到,获得积分10
1秒前
科研通AI6应助叫哥神手采纳,获得10
1秒前
天天快乐应助vvvvvv采纳,获得10
1秒前
卓涵柏完成签到,获得积分10
1秒前
栀初发布了新的文献求助10
1秒前
大个应助夜小繁kira采纳,获得10
1秒前
xixiazhiwang完成签到 ,获得积分10
2秒前
不倦应助莫大采纳,获得10
2秒前
2秒前
liiy完成签到,获得积分10
2秒前
现代冷松发布了新的文献求助10
2秒前
2秒前
2秒前
琪凯定理发布了新的文献求助20
3秒前
3秒前
3秒前
4秒前
sleepingfish应助金色晨光采纳,获得20
4秒前
跳跃巨人完成签到,获得积分10
4秒前
蔡思艺完成签到,获得积分10
5秒前
5秒前
赘婿应助周肆采纳,获得10
5秒前
当当发布了新的文献求助10
7秒前
杆杆发布了新的文献求助10
7秒前
xupeng发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
Litianxue发布了新的文献求助10
8秒前
vvvvvv完成签到,获得积分10
8秒前
9秒前
科研通AI6应助小余同学采纳,获得10
9秒前
Akim应助小余同学采纳,获得10
9秒前
英姑应助小余同学采纳,获得10
9秒前
10秒前
开心完成签到 ,获得积分10
10秒前
电磁炮发布了新的文献求助10
10秒前
10秒前
11秒前
领导范儿应助woaikeyan采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812