光电流
材料科学
钙钛矿(结构)
光电阴极
分解水
催化作用
可逆氢电极
能量转换效率
光电子学
卤化物
纳米技术
化学工程
电极
电化学
无机化学
工作电极
化学
物理化学
电子
工程类
物理
光催化
量子力学
生物化学
作者
Hongjun Chen,Meng Zhang,Thành Trần‐Phú,Renheng Bo,Lei Shi,Iolanda Di Bernardo,Jueming Bing,Jian Pan,Simrjit Singh,Josh Lipton‐Duffin,Tom Wu,Rose Amal,Shujuan Huang,Anita Ho‐Baillie,Antonio Tricoli
标识
DOI:10.1002/adfm.202008245
摘要
Abstract Metal halide perovskite solar cells have an appropriate bandgap (1.5–1.6 eV), and thus output voltage (>1 V), to directly drive solar water splitting. Despite significant progress, their moisture sensitivity still hampers their application for integrated monolithic devices. Furthermore, the prevalence of the use of noble metals as co‐catalysts for existing perovskite‐based devices undermines their use for low‐cost H 2 production. Here, a monolithic architecture for stable perovskite‐based devices with earth‐abundant co‐catalysts is reported, demonstrating an unassisted overall solar‐to‐hydrogen efficiency of 8.54%. The device layout consists of two monolithically encapsulated perovskite (FA 0.80 MA 0.15 Cs 0.05 PbI 2.55 Br 0.45 ) solar cells with low‐cost earth‐abundant CoP and FeNi(OH) x co‐catalysts as the photocathode and photoanode, respectively. The CoP‐based photocathode demonstrates more than 17 h of continuous operation, with a photocurrent density of 12.4 mA cm −2 at 0 V and an onset potential as positive as ≈1 V versus reversible hydrogen electrode (RHE). The FeNi(OH) x ‐based photoanode achieves a photocurrent of 11 mA cm −2 at 1.23 V versus RHE for more than 13 h continuous operation. These excellent stability and performance demonstrate the potential for monolithic integration of perovskite solar cells and low‐cost earth‐abundant co‐catalysts for efficient direct solar H 2 production.
科研通智能强力驱动
Strongly Powered by AbleSci AI