An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study

前列腺癌 医学 接收机工作特性 旁侵犯 算法 前列腺 金标准(测试) 癌症 放射科 人工智能 病理 计算机科学 内科学
作者
Liron Pantanowitz,Gabriela Quiroga‐Garza,Lilach Bien,Ronen Heled,Daphna Laifenfeld,Chaim Linhart,Judith Sandbank,Anat Albrecht Shach,Varda Shalev,Manuela Vecsler,Pamela Michelow,Scott Hazelhurst,Rajiv Dhir
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:2 (8): e407-e416 被引量:271
标识
DOI:10.1016/s2589-7500(20)30159-x
摘要

BackgroundThere is high demand to develop computer-assisted diagnostic tools to evaluate prostate core needle biopsies (CNBs), but little clinical validation and a lack of clinical deployment of such tools. We report here on a blinded clinical validation study and deployment of an artificial intelligence (AI)-based algorithm in a pathology laboratory for routine clinical use to aid prostate diagnosis.MethodsAn AI-based algorithm was developed using haematoxylin and eosin (H&E)-stained slides of prostate CNBs digitised with a Philips scanner, which were divided into training (1 357 480 image patches from 549 H&E-stained slides) and internal test (2501 H&E-stained slides) datasets. The algorithm provided slide-level scores for probability of cancer, Gleason score 7–10 (vs Gleason score 6 or atypical small acinar proliferation [ASAP]), Gleason pattern 5, and perineural invasion and calculation of cancer percentage present in CNB material. The algorithm was subsequently validated on an external dataset of 100 consecutive cases (1627 H&E-stained slides) digitised on an Aperio AT2 scanner. In addition, the AI tool was implemented in a pathology laboratory within routine clinical workflow as a second read system to review all prostate CNBs. Algorithm performance was assessed with area under the receiver operating characteristic curve (AUC), specificity, and sensitivity, as well as Pearson's correlation coefficient (Pearson's r) for cancer percentage.FindingsThe algorithm achieved an AUC of 0·997 (95% CI 0·995 to 0·998) for cancer detection in the internal test set and 0·991 (0·979 to 1·00) in the external validation set. The AUC for distinguishing between a low-grade (Gleason score 6 or ASAP) and high-grade (Gleason score 7–10) cancer diagnosis was 0·941 (0·905 to 0·977) and the AUC for detecting Gleason pattern 5 was 0·971 (0·943 to 0·998) in the external validation set. Cancer percentage calculated by pathologists and the algorithm showed good agreement (r=0·882, 95% CI 0·834 to 0·915; p<0·0001) with a mean bias of −4·14% (−6·36 to −1·91). The algorithm achieved an AUC of 0·957 (0·930 to 0·985) for perineural invasion. In routine practice, the algorithm was used to assess 11 429 H&E-stained slides pertaining to 941 cases leading to 90 Gleason score 7–10 alerts and 560 cancer alerts. 51 (9%) cancer alerts led to additional cuts or stains being ordered, two (4%) of which led to a third opinion request. We report on the first case of missed cancer that was detected by the algorithm.InterpretationThis study reports the successful development, external clinical validation, and deployment in clinical practice of an AI-based algorithm to accurately detect, grade, and evaluate clinically relevant findings in digitised slides of prostate CNBs.FundingIbex Medical Analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liber发布了新的文献求助10
1秒前
gdh完成签到,获得积分10
1秒前
王煊发布了新的文献求助10
1秒前
1111完成签到,获得积分10
2秒前
刘才华发布了新的文献求助10
3秒前
发一区发布了新的文献求助10
3秒前
gdh发布了新的文献求助10
3秒前
脑洞疼应助Racheal采纳,获得10
3秒前
不爱学习发布了新的文献求助10
4秒前
5秒前
5秒前
Mammon发布了新的文献求助10
6秒前
6秒前
合适幻竹关注了科研通微信公众号
6秒前
7秒前
7秒前
火山发布了新的文献求助10
7秒前
pp完成签到,获得积分10
8秒前
HFELL完成签到,获得积分10
8秒前
cc0514gr完成签到,获得积分10
8秒前
lucaslucas发布了新的文献求助50
9秒前
wellwell完成签到,获得积分10
10秒前
阿水发布了新的文献求助10
10秒前
pifu完成签到,获得积分10
10秒前
11秒前
ggsr发布了新的文献求助10
11秒前
chunjianghua发布了新的文献求助10
11秒前
HOOW发布了新的文献求助10
12秒前
Lumi完成签到,获得积分20
12秒前
风趣的洙完成签到,获得积分10
12秒前
求助文献发布了新的文献求助10
14秒前
隐形曼青应助anyujie采纳,获得10
14秒前
14秒前
15秒前
李琳琳完成签到,获得积分20
15秒前
聪明梦容完成签到,获得积分10
15秒前
19秒前
合适幻竹发布了新的文献求助10
20秒前
包振宏完成签到,获得积分10
20秒前
Owen应助gusgusgus采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073082
求助须知:如何正确求助?哪些是违规求助? 4293232
关于积分的说明 13377905
捐赠科研通 4114645
什么是DOI,文献DOI怎么找? 2253057
邀请新用户注册赠送积分活动 1257880
关于科研通互助平台的介绍 1190739