材料科学                        
                
                                
                        
                            复合材料层合板                        
                
                                
                        
                            分层(地质)                        
                
                                
                        
                            复合材料                        
                
                                
                        
                            复合数                        
                
                                
                        
                            碳纤维增强聚合物                        
                
                                
                        
                            激光扫描测振法                        
                
                                
                        
                            智能材料                        
                
                                
                        
                            激光多普勒测振仪                        
                
                                
                        
                            结构工程                        
                
                                
                        
                            分布反馈激光器                        
                
                                
                        
                            生物                        
                
                                
                        
                            构造学                        
                
                                
                        
                            工程类                        
                
                                
                        
                            古生物学                        
                
                                
                        
                            俯冲                        
                
                                
                        
                            光电子学                        
                
                                
                        
                            波长                        
                
                        
                    
            作者
            
                Maosen Cao,Zhongqing Su,Hao Xu,Maciej Radzieński,Wei Xu,Wiesław Ostachowicz            
         
                    
        
    
            
            标识
            
                                    DOI:10.1016/j.ymssp.2020.106831
                                    
                                
                                 
         
        
                
            摘要
            
            Abstract   Laminated composites have been increasingly used in structural components. However, transverse impact to a composite laminate can cause initial damage such as notches and delamination, jeopardizing the integrity and safety of composite laminated structures. With this concern, this study proposes a novel damage characterization approach for the identification of initial damage in composite laminates, even in the absence of material and structural information. In particular, starting from the vibration equation of composite laminates, a novel concept of damage-caused force is formulated to characterize damage, and strategies of isotropization and normalization are further integrated to deal with the absence of material and structural information. Thereby, a baseline-free damage index is established using the damage-caused force, by which the presence, location, and size of initial damage in cross-ply composite laminates can be characterized without knowledge of material and structural parameters. The capability of the approach is numerically verified on carbon fiber-reinforced polymer (CFRP) laminates with a notch and a delamination, respectively. The applicability of the approach is experimentally validated by identifying a notch and a delamination in CFRP laminates, respectively. The CFRP laminates are excited by lead-zirconate-titanate (PZT) actuators and scanned by a scanning laser vibrometer (SLV) to acquire high-resolution mode shapes. Numerical and experimental results show that the proposed approach features high robustness to environmental noise and is capable of identifying initial damage in cross-ply composite laminates without prior material and structural information.
         
            
 
                 
                
                    
                    科研通智能强力驱动
Strongly Powered by AbleSci AI