Computational studies of DNA repair: Insights into the function of monofunctional DNA glycosylases in the base excision repair pathway

DNA糖基化酶 碱基 DNA修复 基底切除修复术 DNA损伤 核苷酸切除修复 DNA 化学 生物化学 生物 计算生物学 遗传学
作者
Rajwinder Kaur,Dylan J. Nikkel,Stacey D. Wetmore
出处
期刊:Wiley Interdisciplinary Reviews: Computational Molecular Science [Wiley]
卷期号:10 (5) 被引量:15
标识
DOI:10.1002/wcms.1471
摘要

Abstract The information contained within DNA as a sequence of nucleobases is required for life of most organisms, yet can get altered when the nucleobases are damaged upon exposure to many internal (hormones) and external (ultraviolet sunlight, pollutants) sources. As a result, repair pathways exist to combat the potentially detrimental effects of DNA damage. Nonbulky nucleobase damage (nucleobase oxidation, alkylation and deamination) is commonly removed by the base excision repair (BER) pathway, which involves several enzymes. The first BER enzymes are the DNA glycosylases, which are responsible for identifying the damaged base, flipping the base into the enzyme active site and removing the damaged nucleobase from the sugar–phosphate backbone. Due to the stability of many forms of damaged DNA, the DNA glycosylases must achieve great catalytic power. Understanding the mechanistic details associated with DNA glycosylases is essential for developing detection and treatment strategies for many diseases as abnormal glycosylase function has been associated with cancers, metabolic dysfunctions, neurodegeneration and epigenetic programming during embryo development. Molecular level insight into the function of a wide range of DNA glycosylases has been obtained from computational chemistry, including quantum mechanical cluster calculations, combined quantum mechanics‐molecular mechanics approaches and molecular dynamics simulations. By discussing some of the modeling that has been performed to date on monofunctional DNA glycosylases, the key contributions of the field of computational chemistry to broadening our understanding of the function of this important enzyme family, as well as the critical interplay between traditional biochemical experiments and computer calculations, is highlighted. This article is categorized under: Structure and Mechanism > Reaction Mechanisms and Catalysis Structure and Mechanism > Computational Biochemistry and Biophysics Electronic Structure Theory > Combined QM/MM Methods
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哎哟可爱完成签到,获得积分10
刚刚
1秒前
hd发布了新的文献求助10
2秒前
xu发布了新的文献求助10
2秒前
桐桐应助asdf采纳,获得10
3秒前
白三烯小童鞋完成签到 ,获得积分10
3秒前
3秒前
浮游应助依依采纳,获得10
4秒前
冷酷的浩天完成签到,获得积分10
5秒前
5秒前
xiu-er发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
8秒前
moon发布了新的文献求助10
10秒前
大神瓜发布了新的文献求助10
11秒前
婷婷婷完成签到 ,获得积分10
11秒前
番薯发布了新的文献求助30
12秒前
11发布了新的文献求助10
12秒前
13秒前
ZQP发布了新的文献求助10
14秒前
15秒前
大个应助panmin采纳,获得10
15秒前
藤椒辣鱼应助Wangjingxuan采纳,获得10
16秒前
在水一方应助zy采纳,获得10
16秒前
18秒前
ZQP完成签到,获得积分10
19秒前
语默完成签到 ,获得积分10
20秒前
大胆冰岚完成签到,获得积分10
23秒前
今后应助大力的猕猴桃采纳,获得10
24秒前
打打应助Roy采纳,获得10
26秒前
TCAcycle完成签到,获得积分10
28秒前
28秒前
错过花期的花完成签到 ,获得积分10
28秒前
30秒前
源宝完成签到 ,获得积分10
30秒前
研友_VZG7GZ应助巴巴bow采纳,获得10
33秒前
小二郎应助风笛采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287927
求助须知:如何正确求助?哪些是违规求助? 4439938
关于积分的说明 13823438
捐赠科研通 4322173
什么是DOI,文献DOI怎么找? 2372367
邀请新用户注册赠送积分活动 1367876
关于科研通互助平台的介绍 1331448