Machine Learning for Bioinformatics

人工智能 机器学习 计算机科学 领域(数学) 人工神经网络 钥匙(锁) 集合(抽象数据类型) 特征(语言学) 生物信息学 生物 数学 计算机安全 语言学 哲学 程序设计语言 纯数学
作者
K. Aditya Shastry,H. A. Sanjay
出处
期刊:Algorithms for intelligent systems 卷期号:: 25-39 被引量:39
标识
DOI:10.1007/978-981-15-2445-5_3
摘要

Machine learning (ML) deals with the automated learning of machines without being programmed explicitly. It focuses on performing data-based predictions and has several applications in the field of bioinformatics. Bioinformatics involves the processing of biological data using approaches based on computation and mathematics. The biological data has grown exponentially in recent times leading to two issues. One issue is of efficient information storage and the second issue deals with how useful knowledge can be mined from the data. The second issue can be solved using machine learning which can generate knowledge from data that is heterogeneous in nature. The feature learning is enabled automatically by deep learning which represents a machine learning technique. New set of features are constructed by combining multiple features based on the dataset. This approach enables algorithms to perform complex predictions on large datasets. ML is currently being applied in six key subfields of bioinformatics such as microarrays, evolution, systems biology, genomics, text mining, and proteomics. This chapter is composed of four sections. The first section will provide an outline of ML in bioinformatics. This is followed by the second section which highlights the different machine learning techniques in bioinformatics. The third section describes two case studies using artificial neural network in bioinformatics. The fourth section analyzes the various research areas related to bioinformatics that can be explored by the academicians and researchers. The conclusion of the chapter is presented in the end.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzl007完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
5秒前
尊敬的半梅完成签到 ,获得积分10
6秒前
3AM发布了新的文献求助10
7秒前
华仔应助火星上的若颜采纳,获得10
8秒前
风中乐曲完成签到,获得积分10
8秒前
zho发布了新的文献求助10
8秒前
所所应助还行采纳,获得10
8秒前
bxl发布了新的文献求助30
9秒前
9秒前
10秒前
10秒前
丢丢银发布了新的文献求助10
11秒前
16秒前
小杨发布了新的文献求助10
17秒前
18秒前
桐桐应助sunsold采纳,获得10
19秒前
ssstitch发布了新的文献求助10
21秒前
科研通AI5应助姜茶采纳,获得10
22秒前
Jasper应助bxl采纳,获得30
22秒前
小猫最受完成签到,获得积分10
23秒前
wangyy65发布了新的文献求助30
25秒前
科研通AI5应助丢丢银采纳,获得10
28秒前
qiao应助木染采纳,获得10
31秒前
ssstitch完成签到,获得积分10
33秒前
34秒前
35秒前
35秒前
35秒前
闫晓丽发布了新的文献求助10
37秒前
Akim应助SEM小菜鸡采纳,获得10
38秒前
顾矜应助小城故事和冰雨采纳,获得10
39秒前
丢丢银发布了新的文献求助10
41秒前
jianhan发布了新的文献求助10
41秒前
小破网完成签到 ,获得积分0
42秒前
天天快乐应助李建芳采纳,获得10
46秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777008
求助须知:如何正确求助?哪些是违规求助? 3322389
关于积分的说明 10210090
捐赠科研通 3037746
什么是DOI,文献DOI怎么找? 1666872
邀请新用户注册赠送积分活动 797711
科研通“疑难数据库(出版商)”最低求助积分说明 758040