Random-Forest-Algorithm-Based Applications of the Basic Characteristics and Serum and Imaging Biomarkers to Diagnose Mild Cognitive Impairment

磁共振弥散成像 医学 认知障碍 部分各向异性 随机森林 脑血流 糖尿病 算法 痴呆 冠状动脉疾病 疾病 内科学 磁共振成像 人工智能 数学 放射科 计算机科学 内分泌学
作者
Juan Yang,Haijing Sui,Ronghong Jiao,Min Zhang,Xiaohui Zhao,Lingling Wang,Wenping Deng,Xueyuan Liu
出处
期刊:Current Alzheimer Research [Bentham Science Publishers]
卷期号:19 (1): 76-83
标识
DOI:10.2174/1567205019666220128120927
摘要

Mild cognitive impairment (MCI) is considered the early stage of Alzheimer's Disease (AD). The purpose of our study was to analyze the basic characteristics and serum and imaging biomarkers for the diagnosis of MCI patients as a more objective and accurate approach.The Montreal Cognitive Test was used to test 119 patients aged ≥65. Such serum biomarkers were detected as preprandial blood glucose, triglyceride, total cholesterol, Aβ1-40, Aβ1-42, and P-tau. All the subjects were scanned with 1.5T MRI (GE Healthcare, WI, USA) to obtain DWI, DTI, and ASL images. DTI was used to calculate the anisotropy fraction (FA), DWI was used to calculate the apparent diffusion coefficient (ADC), and ASL was used to calculate the cerebral blood flow (CBF). All the images were then registered to the SPACE of the Montreal Neurological Institute (MNI). In 116 brain regions, the medians of FA, ADC, and CBF were extracted by automatic anatomical labeling. The basic characteristics included gender, education level, and previous disease history of hypertension, diabetes, and coronary heart disease. The data were randomly divided into training sets and test ones. The recursive random forest algorithm was applied to the diagnosis of MCI patients, and the recursive feature elimination (RFE) method was used to screen the significant basic features and serum and imaging biomarkers. The overall accuracy, sensitivity, and specificity were calculated, respectively, and so were the ROC curve and the area under the curve (AUC) of the test set.When the variable of the MCI diagnostic model was an imaging biomarker, the training accuracy of the random forest was 100%, the correct rate of the test was 86.23%, the sensitivity was 78.26%, and the specificity was 100%. When combining the basic characteristics, the serum and imaging biomarkers as variables of the MCI diagnostic model, the training accuracy of the random forest was found to be 100%; the test accuracy was 97.23%, the sensitivity was 94.44%, and the specificity was 100%. RFE analysis showed that age, Aβ1-40, and cerebellum_4_6 were the most important basic feature, serum biomarker, imaging biomarker, respectively.Imaging biomarkers can effectively diagnose MCI. The diagnostic capacity of the basic trait biomarkers or serum biomarkers for MCI is limited, but their combination with imaging biomarkers can improve the diagnostic capacity, as indicated by the sensitivity of 94.44% and the specificity of 100% in our model. As a machine learning method, a random forest can help diagnose MCI effectively while screening important influencing factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
inCHident发布了新的文献求助10
刚刚
兴起为你发布了新的文献求助10
1秒前
香蕉觅云应助fffff采纳,获得10
1秒前
1秒前
早睡能长个完成签到,获得积分10
1秒前
1秒前
ww发布了新的文献求助10
3秒前
暮霭沉沉发布了新的文献求助20
3秒前
小马甲应助木木采纳,获得10
3秒前
4秒前
wen完成签到,获得积分10
4秒前
670781628完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助50
4秒前
听雨家教发布了新的文献求助10
4秒前
4秒前
清风发布了新的文献求助10
4秒前
Akim应助迅速的念芹采纳,获得10
5秒前
weng完成签到,获得积分10
5秒前
小二郎应助优雅的擎宇采纳,获得10
7秒前
科研通AI6应助眉洛采纳,获得10
7秒前
可爱的函函应助670781628采纳,获得30
8秒前
小马发布了新的文献求助10
8秒前
凉生完成签到,获得积分10
9秒前
9秒前
9秒前
斯文败类应助66采纳,获得10
9秒前
10秒前
李爱国应助旺旺碎冰冰采纳,获得10
12秒前
温柔的盼旋完成签到,获得积分10
12秒前
12秒前
duanqianqian完成签到,获得积分10
13秒前
猪皮恶人发布了新的文献求助10
13秒前
13秒前
ANmin完成签到 ,获得积分10
13秒前
Akim应助追寻幻儿采纳,获得10
13秒前
小马甲应助兴起为你采纳,获得10
14秒前
鲁鲁皮完成签到,获得积分10
14秒前
欢呼的若烟给欢呼的若烟的求助进行了留言
15秒前
可爱的函函应助跳跳妈妈采纳,获得10
15秒前
木木发布了新的文献求助10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4232991
求助须知:如何正确求助?哪些是违规求助? 3766435
关于积分的说明 11833844
捐赠科研通 3424871
什么是DOI,文献DOI怎么找? 1879568
邀请新用户注册赠送积分活动 932323
科研通“疑难数据库(出版商)”最低求助积分说明 839586