Deep multimodal learning for lymph node metastasis prediction of primary thyroid cancer

深度学习 医学 人工智能 甲状腺癌 模式 模态(人机交互) 背景(考古学) 淋巴结 放射科 机器学习 计算机科学 癌症 转移 医学物理学 内科学 社会学 古生物学 生物 社会科学
作者
Xinglong Wu,Mengying Li,Xin‐Wu Cui,Guoping Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (3): 035008-035008 被引量:26
标识
DOI:10.1088/1361-6560/ac4c47
摘要

Objective. The incidence of primary thyroid cancer has risen steadily over the past decades because of overdiagnosis and overtreatment through the improvement in imaging techniques for screening, especially in ultrasound examination. Metastatic status of lymph nodes is important for staging the type of primary thyroid cancer. Deep learning algorithms based on ultrasound images were thus developed to assist radiologists on the diagnosis of lymph node metastasis. The objective of this study is to integrate more clinical context (e.g., health records and various image modalities) into, and explore more interpretable patterns discovered by, deep learning algorithms for the prediction of lymph node metastasis in primary thyroid cancer patients.Approach. A deep multimodal learning network was developed in this study with a novel index proposed to compare the contribution of different modalities when making the predictions.Main results. The proposed multimodal network achieved an average F1 score of 0.888 and an average area under the receiver operating characteristic curve (AUC) value of 0.973 in two independent validation sets, and the performance was significantly better than that of three single-modality deep learning networks. Moreover, among three modalities used in this study, the deep multimodal learning network relied generally more on image modalities than the data modality of clinic records when making the predictions.Significance. Our work is beneficial to prospective clinic trials of radiologists on the diagnosis of lymph node metastasis in primary thyroid cancer, and will better help them understand how the predictions are made in deep multimodal learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dean完成签到 ,获得积分10
1秒前
南玉不咕咕完成签到,获得积分10
5秒前
小马甲应助闻元杰采纳,获得10
5秒前
9秒前
chen发布了新的文献求助20
11秒前
pluto应助知性的土豆采纳,获得10
16秒前
19秒前
20秒前
22秒前
arcremnant完成签到,获得积分10
24秒前
曙光完成签到,获得积分10
25秒前
安陌煜发布了新的文献求助10
26秒前
27秒前
苹果小玉完成签到,获得积分10
30秒前
34秒前
苹果小玉发布了新的文献求助10
35秒前
35秒前
故意的怜晴完成签到 ,获得积分10
35秒前
包子凯越完成签到,获得积分10
36秒前
科研通AI5应助曾经的便当采纳,获得10
38秒前
哈哈哈发布了新的文献求助10
39秒前
昏睡的蟠桃应助断章采纳,获得100
40秒前
MchemG给顺利萃的求助进行了留言
42秒前
43秒前
骆十八完成签到,获得积分10
49秒前
pluto应助isfj采纳,获得20
50秒前
51秒前
HEAUBOOK应助刘丰采纳,获得10
51秒前
51秒前
52秒前
14完成签到,获得积分10
53秒前
小曲完成签到,获得积分10
55秒前
Lucas应助好远加身采纳,获得10
56秒前
安陌煜完成签到,获得积分10
56秒前
杪杪发布了新的文献求助10
56秒前
Feifei133发布了新的文献求助10
56秒前
58秒前
58秒前
bbdan发布了新的文献求助10
58秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782063
求助须知:如何正确求助?哪些是违规求助? 3327547
关于积分的说明 10232059
捐赠科研通 3042501
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799555
科研通“疑难数据库(出版商)”最低求助积分说明 758825