The Prediction of Preterm Birth Using Time-Series Technology-Based Machine Learning: Retrospective Cohort Study

医学 产科 机器学习 病历 怀孕 胎龄 计算机科学 内科学 遗传学 生物
作者
Yichao Zhang,Sha Lu,Yina Wu,Wensheng Hu,Zhenming Yuan
出处
期刊:JMIR medical informatics [JMIR Publications]
卷期号:10 (6): e33835-e33835 被引量:13
标识
DOI:10.2196/33835
摘要

Globally, the preterm birth rate has tended to increase over time. Ultrasonography cervical-length assessment is considered to be the most effective screening method for preterm birth, but routine, universal cervical-length screening remains controversial because of its cost.We used obstetric data to analyze and assess the risk of preterm birth. A machine learning model based on time-series technology was used to analyze regular, repeated obstetric examination records during pregnancy to improve the performance of the preterm birth screening model.This study attempts to use continuous electronic medical record (EMR) data from pregnant women to construct a preterm birth prediction classifier based on long short-term memory (LSTM) networks. Clinical data were collected from 5187 pregnant Chinese women who gave birth with natural vaginal delivery. The data included more than 25,000 obstetric EMRs from the early trimester to 28 weeks of gestation. The area under the curve (AUC), accuracy, sensitivity, and specificity were used to assess the performance of the prediction model.Compared with a traditional cross-sectional study, the LSTM model in this time-series study had better overall prediction ability and a lower misdiagnosis rate at the same detection rate. Accuracy was 0.739, sensitivity was 0.407, specificity was 0.982, and the AUC was 0.651. Important-feature identification indicated that blood pressure, blood glucose, lipids, uric acid, and other metabolic factors were important factors related to preterm birth.The results of this study will be helpful to the formulation of guidelines for the prevention and treatment of preterm birth, and will help clinicians make correct decisions during obstetric examinations. The time-series model has advantages for preterm birth prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏夜完成签到 ,获得积分10
刚刚
wuyuyu5413完成签到,获得积分10
4秒前
justin完成签到 ,获得积分10
5秒前
曾志伟完成签到,获得积分10
5秒前
Shandongdaxiu完成签到 ,获得积分10
6秒前
bellapp完成签到 ,获得积分10
8秒前
独特纸飞机完成签到 ,获得积分10
8秒前
关美人儿完成签到,获得积分10
8秒前
温文尔雅完成签到,获得积分10
11秒前
相南相北完成签到 ,获得积分10
13秒前
温馨完成签到 ,获得积分10
13秒前
LIKUN完成签到,获得积分10
13秒前
甜甜醉波完成签到,获得积分10
15秒前
Present完成签到,获得积分10
15秒前
优雅含灵完成签到 ,获得积分10
15秒前
山神厘子完成签到,获得积分10
16秒前
萧然完成签到,获得积分10
17秒前
西部菱斑响尾蛇完成签到,获得积分10
18秒前
顾矜应助亻圭采纳,获得10
18秒前
Zurlliant完成签到,获得积分10
19秒前
宇宙飞船2436完成签到,获得积分10
19秒前
蕉鲁诺蕉巴纳完成签到,获得积分0
20秒前
22秒前
阿达完成签到 ,获得积分10
23秒前
Xu完成签到 ,获得积分10
23秒前
虚幻谷波完成签到,获得积分10
24秒前
zhang发布了新的文献求助50
24秒前
share完成签到 ,获得积分10
25秒前
小龙发布了新的文献求助10
26秒前
kehe!完成签到 ,获得积分0
26秒前
27秒前
27秒前
hannah完成签到,获得积分10
28秒前
DrW完成签到,获得积分10
28秒前
马儿饿了要吃草完成签到,获得积分10
29秒前
自然归尘完成签到 ,获得积分10
30秒前
月桂氮卓酮完成签到,获得积分10
32秒前
32秒前
小龙完成签到,获得积分10
34秒前
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
水稻光合CO2浓缩机制的创建及其作用研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4178673
求助须知:如何正确求助?哪些是违规求助? 3713964
关于积分的说明 11708492
捐赠科研通 3395291
什么是DOI,文献DOI怎么找? 1862801
邀请新用户注册赠送积分活动 921452
科研通“疑难数据库(出版商)”最低求助积分说明 833187