Optimization of Surface Quality and Power Consumption in Machining Hardened AISI 4340 Steel

材料科学 表面粗糙度 田口方法 机械加工 可加工性 正交数组 淬火钢 线性回归 机械工程 研磨 能源消耗 响应面法 复合材料 冶金 数学 统计 工程类 电气工程
作者
Dennis Ochengo,Liang Li,Wei Zhao,Ning He
出处
期刊:Advances in Materials Science and Engineering [Hindawi Limited]
卷期号:2022: 1-12 被引量:14
标识
DOI:10.1155/2022/2675003
摘要

Hard turning has become an attractive method of machining for most manufacturers in the last few years due to its low cost and superior surface quality compared to grinding. In this experimental study, the machinability of hardened steel under dry machining on a CNC lathe is undertaken to optimize the cutting parameters for minimum surface roughness and energy consumption with the cutting speed (320, 450, and 575), tool type (coated and uncoated), and feed rate (0.1, 0.18, and 0.26) as the input parameters. The Taguchi method, based on the L18 orthogonal array, the variance analysis, the signal-to-noise ratios, and the response surface methodology have been used to optimize surface roughness (Ra) and cutting power (Cp). Optimum cutting parameters and levels were determined, and the relationship between cutting parameters and output variables was analyzed with the aid of two-dimensional and three-dimensional graphics. The results show that the most effective parameter on the surface roughness was the tool type (78%), while the most effective parameter on energy consumption was the cutting speed (90%). The combination of low feed rate and high cutting speed is necessary for minimizing the surface roughness. Besides, the impact of two-factor interactions of the feed rate-cutting speed and depth of cut-cutting speed appears to be substantial. The linear regression models were validated using confirmation tests. Finally, regression coefficients were determined as a mathematical model, and it was observed that this estimated model yielded results that were very similar to those achieved via real experiment (correlation values: 97.64% for surface roughness and 98.72% for energy consumption).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adi完成签到,获得积分10
1秒前
蜉蝣发布了新的文献求助10
1秒前
诚心的忆灵完成签到,获得积分10
2秒前
科研通AI6应助哈哈哈采纳,获得10
2秒前
梦里看花落完成签到 ,获得积分10
3秒前
董1发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
汉堡包应助hkxfg采纳,获得80
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
xiamqw完成签到,获得积分10
5秒前
研友_nv2r4n完成签到,获得积分20
5秒前
房山芙完成签到,获得积分10
7秒前
7秒前
领导范儿应助炙热果汁采纳,获得10
8秒前
8秒前
搞笑煎蛋发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
谨慎又夏完成签到,获得积分10
11秒前
吴吴温欣完成签到 ,获得积分10
12秒前
月Yue关注了科研通微信公众号
12秒前
12秒前
郭政飞发布了新的文献求助10
12秒前
12秒前
木南发布了新的文献求助10
13秒前
wwl01034发布了新的文献求助10
13秒前
赘婿应助宝玉采纳,获得10
13秒前
14秒前
14秒前
15秒前
16秒前
大个应助蜉蝣采纳,获得10
16秒前
李健的粉丝团团长应助Niki采纳,获得10
17秒前
从若发布了新的文献求助10
18秒前
zhang-leo发布了新的文献求助10
19秒前
无限小霜完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720067
求助须知:如何正确求助?哪些是违规求助? 5258729
关于积分的说明 15290203
捐赠科研通 4869657
什么是DOI,文献DOI怎么找? 2614906
邀请新用户注册赠送积分活动 1564885
关于科研通互助平台的介绍 1522079