TimeCLR: A self-supervised contrastive learning framework for univariate time series representation

计算机科学 人工智能 单变量 分类器(UML) 时间序列 特征学习 模式识别(心理学) 机器学习 特征(语言学) 提取器 领域(数学) 特征提取 代表(政治) 深度学习 数据挖掘 多元统计 数学 政治 工程类 哲学 语言学 工艺工程 政治学 法学 纯数学
作者
Xinyu Yang,Zhenguo Zhang,Rongyi Cui
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:245: 108606-108606 被引量:37
标识
DOI:10.1016/j.knosys.2022.108606
摘要

Time series are usually rarely or sparsely labeled, which limits the performance of deep learning models. Self-supervised representation learning can reduce the reliance of deep learning models on labeled data by extracting structure and feature information from unlabeled data and improve model performance when labeled data is insufficient. Although SimCLR has achieved impressive success in the computer vision field, direct applying SimCLR to time series field usually performs poorly due to the part of data augmentation and the part of feature extractor not being adapted to the temporal dependencies within the time series data. In order to obtain high-quality time series representations, we propose TimeCLR, a framework which is suitable for univariate time series representation, by combining the advantages of DTW and InceptionTime. Inspired by the DTW-based k-nearest neighbor classifier, we first propose the DTW data augmentation that can generate DTW-targeted phase shift and amplitude change phenomena and retain time series structure and feature information. Inspired by the current state-of-the-art deep learning-based time series classification method, InceptionTime, which has good feature extraction capabilities, we designed a feature extractor capable of generating representations in an end-to-end manner. Finally, combining the advantages of DTW data augmentation and InceptionTime, our proposed TimeCLR method successfully extends SimCLR and applies it to the time series field. We designed a variety of experiments and performed careful ablation studies. Experimental results show that our proposed TimeCLR method can not only achieve comparable performance to supervised InceptionTime on multiple tasks, but also produce better performance than supervised learning models in the case of insufficient labeled data, and can be flexibly applied to univariate time series data from different domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾诚发布了新的文献求助10
刚刚
马旭辉完成签到,获得积分20
刚刚
刚刚
1秒前
new发布了新的文献求助10
1秒前
2秒前
周爱李完成签到,获得积分20
3秒前
乐乐乐乐乐乐应助马旭辉采纳,获得10
4秒前
4秒前
kingwill举报阿腾求助涉嫌违规
5秒前
聪慧的梦安完成签到,获得积分10
5秒前
hooo发布了新的文献求助10
5秒前
5秒前
东原角完成签到 ,获得积分20
6秒前
ttttt完成签到,获得积分10
6秒前
瘦瘦店员发布了新的文献求助10
6秒前
7秒前
钵钵鸡完成签到 ,获得积分10
7秒前
MchemG应助wodeqiche2007采纳,获得30
7秒前
7秒前
103921wjk发布了新的文献求助10
8秒前
xiewuhua发布了新的文献求助10
8秒前
快乐的雨竹完成签到,获得积分10
8秒前
8秒前
雪蛤完成签到,获得积分10
8秒前
沐启发布了新的文献求助20
9秒前
lililili完成签到,获得积分10
9秒前
彭于晏应助稳重向南采纳,获得10
9秒前
coolkid应助gh采纳,获得20
9秒前
搜集达人应助ttttt采纳,获得10
10秒前
再慕发布了新的文献求助10
11秒前
11秒前
小马甲应助lh采纳,获得10
11秒前
落后以旋发布了新的文献求助10
11秒前
悠然发布了新的文献求助10
12秒前
13秒前
科研小菜鸟i完成签到,获得积分10
13秒前
13秒前
14秒前
酷炫翠桃举报Jock求助涉嫌违规
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
有机化学图表解 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717