金黄色葡萄球菌
羧甲基纤维素
自愈水凝胶
葡萄糖氧化酶
NADPH氧化酶
巨噬细胞极化
抗菌剂
伤口愈合
PI3K/AKT/mTOR通路
材料科学
炎症
右旋糖酐
壳聚糖
药理学
细菌
生物物理学
细胞生物学
糖尿病
巨噬细胞
伤口敷料
氧化应激
活性氧
生物医学工程
代谢活性
间充质干细胞
慢性伤口
生物化学
化学
多糖
弹性(材料科学)
作者
Yifei Zhao,Haoxin Cai,Xiangke Rong,Lu Dang,Jin Cao,Shu-Ting Yao,Mingkai Li,Xueyong Li,Jun Wu,Hongbing Deng,Jin-Qing Li
标识
DOI:10.1002/adfm.202509318
摘要
Abstract Diabetic wound management remains a major clinical challenge due to its pathologically complex microenvironment. ROS play dual roles in healing, enabling antimicrobial activity while requiring timely attenuation to permit tissue regeneration. This spatiotemporal paradox underscores the need for dressings that dynamically regulate ROS. Here, an intelligent hydrogel that enables autonomous wound regulation via phase‐transition therapy is engineered. An acid‐sensitive H 2 S donor is synthesized by conjugating 2‐aminopyridine‐5‐thiocarboxamide to oxidized dextran and integrated with glucose oxidase (GOx)‐loaded carboxymethyl cellulose into an adaptive hydrogel. The material shows strong tissue adhesion, shape adaptability, mechanical resilience (>70% stress retention after 20 cycles), and rapid self‐healing (>90% recovery in 30 min). Under hyperglycemic conditions, GOx‐generated ROS eliminated 98% methicillin‐resistant Staphylococcus aureus within 4 h while acidifying the microenvironment to trigger sustained H 2 S release over 72 h, enhancing M2 macrophage polarization and angiogenesis. This enzyme‐cascaded system establishes a self‐sustaining metabolic circuit that shifts from antibacterial defense to pro‐regenerative modulation, enabling active metabolic intervention in diabetic wounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI