Sediment nutrient characteristics and aquatic macrophytes in lowland English rivers

水生植物 沉积物 环境科学 营养物 营养水平 水柱 富营养化 水生植物 水文学(农业) 水生生态系统 生态学 地质学 生物 古生物学 岩土工程
作者
Stewart J. Clarke,Geraldene Wharton
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:266 (1-3): 103-112 被引量:132
标识
DOI:10.1016/s0048-9697(00)00754-3
摘要

Aquatic macrophytes play an important role in the nutrient dynamics of streams. As a result, there is much interest in their use as trophic indicators. However, the relationship between aquatic macrophytes and the trophic status of rivers is a complex one, partly because of the effects of a wide range of environmental variables and partly because submerged, rooted macrophytes can absorb nutrients from the river sediments and/or the water column. Experiments which have tried to establish the relative importance of sediments or water as sources of nutrients are inconclusive and further work is needed to establish how sediment nutrient characteristics vary within and among rivers (spatially and temporally) and the inter-relationships between sediment nutrients, water column chemistry and macrophytes. This paper presents the initial findings from a study of 17 lowland rivers in southern England which is exploring the spatial variability of sediment characteristics (total and inorganic phosphorus, total nitrogen, organic carbon, silt–clay fraction and organic matter content) and the relationship with aquatic macrophytes. The preliminary analysis indicates that although sediment characteristics are highly variable within 100-m river reaches, the variability across the 17 rivers is even greater; this is despite the limited geographic and trophic range of the study sites. The results presented in this paper also give some indication of the sediment characteristics associated with five macrophyte species but it is too early to ascribe sediment preferences for particular species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助裴仰纳采纳,获得10
1秒前
Singularity发布了新的文献求助10
1秒前
2秒前
3秒前
lucky发布了新的文献求助10
3秒前
冷酷月饼完成签到,获得积分10
3秒前
化龙完成签到,获得积分10
3秒前
M2106发布了新的文献求助10
4秒前
ZY发布了新的文献求助10
4秒前
清辞完成签到,获得积分10
4秒前
TEMPO发布了新的文献求助10
5秒前
大个应助弱于一般人类采纳,获得10
5秒前
5秒前
阿牛发布了新的文献求助10
6秒前
6秒前
6秒前
酷波er应助绿荫采纳,获得10
7秒前
sdl发布了新的文献求助10
7秒前
8秒前
8秒前
刘可乐完成签到,获得积分10
8秒前
阿蒙完成签到,获得积分10
8秒前
9秒前
wwxd发布了新的文献求助10
9秒前
白白嫩嫩发布了新的文献求助30
9秒前
懒懒大王发布了新的文献求助50
10秒前
FashionBoy应助萍水相逢采纳,获得10
11秒前
Phi.Wang完成签到,获得积分10
11秒前
皮雁子完成签到,获得积分10
12秒前
深情安青应助淡定荔枝采纳,获得10
12秒前
13秒前
花岛宝贝发布了新的文献求助10
14秒前
14秒前
小蝶完成签到,获得积分10
15秒前
15秒前
鸢也完成签到,获得积分10
15秒前
科研通AI2S应助Alicia采纳,获得10
16秒前
舒服的忆南完成签到,获得积分10
16秒前
科研通AI5应助TEMPO采纳,获得10
17秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Introduction to Linear Optimization, by Dimitris Bertsimas and John N. Tsitsiklis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828537
求助须知:如何正确求助?哪些是违规求助? 3370859
关于积分的说明 10465401
捐赠科研通 3090856
什么是DOI,文献DOI怎么找? 1700562
邀请新用户注册赠送积分活动 817893
科研通“疑难数据库(出版商)”最低求助积分说明 770588