卷积神经网络
计算机科学
神经影像学
人工智能
特征提取
深度学习
残余物
模式识别(心理学)
特征(语言学)
认知障碍
上下文图像分类
机器学习
认知
图像(数学)
医学
语言学
哲学
算法
精神科
作者
Sergey Korolev,Amir Safiullin,Mikhail Belyaev,Yulia Dodonova
标识
DOI:10.1109/isbi.2017.7950647
摘要
In the recent years there have been a number of studies that applied deep learning algorithms to neuroimaging data. Pipelines used in those studies mostly require multiple processing steps for feature extraction, although modern advancements in deep learning for image classification can provide a powerful framework for automatic feature generation and more straightforward analysis. In this paper, we show how similar performance can be achieved skipping these feature extraction steps with the residual and plain 3D convolutional neural network architectures. We demonstrate the performance of the proposed approach for classification of Alzheimer's disease versus mild cognitive impairment and normal controls on the Alzheimers Disease National Initiative (ADNI) dataset of 3D structural MRI brain scans.
科研通智能强力驱动
Strongly Powered by AbleSci AI