Piston wind and energy saving based on the analysis of fresh air in the subway system

活塞(光学) 通风(建筑) 能量(信号处理) 汽车工程 火车 海洋工程 风速 新鲜空气 工程类 模拟 环境科学 机械工程 气象学 数学 物理 波前 光学 统计 地图学 入口 地理
作者
Deqiang He,Xiaoliang Teng,Yanjun Chen,Bin Liu,Jinxin Wu
出处
期刊:Sustainable Energy Technologies and Assessments [Elsevier BV]
卷期号:50: 101805-101805 被引量:4
标识
DOI:10.1016/j.seta.2021.101805
摘要

Ventilation and energy saving play a vital role in the sustainable development of cities, and the fresh air caused by the piston effect is closely connected with ventilation and energy savings of metro stations. This paper aims to propose a general theoretical formula of piston wind and analyze the energy-saving effects of metro station ventilation system in multi-vehicle models using fresh air. Firstly, the variation trend of velocity field of the numerical simulation result is verified by being compared with on-site experimental data. Secondly, a general theoretical formula of piston wind is put forward, which could be applied in various situations of the train running in the tunnel. To be specific, the factors that influence the piston wind can be investigated by this formula. Thirdly, the energy-saving effects of multiple-vehicle models are discussed and compared with the single-vehicle model. The results show that the energy savings of multi-vehicle models depend on the location, state, and the number of trains in the tunnel. Moreover, the fresh air velocity is a critical factor impacting the energy savings of metro stations. Namely, based on the utilized fresh air volume of the station entrance-exit and the operation strategy of metro station ventilation system, the energy saving can be obtained. Besides, the fresh air velocity acquired by prediction is more convenient than by field test and numerical simulation. Thus, it is essential to forecast the fresh air speed. Finally, the fresh air velocity is predicted based on deep learning, and the prediction is applicable to analyze the energy-saving effects of metro stations utilizing fresh air.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助丰富采纳,获得10
1秒前
2秒前
彭于晏应助hugeng采纳,获得10
2秒前
2秒前
3秒前
JamesPei应助ekdjk采纳,获得10
4秒前
4秒前
镜中男人完成签到,获得积分10
4秒前
maodou完成签到,获得积分10
5秒前
无花果应助龚幻梦采纳,获得10
5秒前
华仔应助扶风追梦采纳,获得10
5秒前
吹又生完成签到,获得积分10
6秒前
6秒前
孟寐以求发布了新的文献求助10
6秒前
久久完成签到,获得积分10
7秒前
zjm发布了新的文献求助10
10秒前
11秒前
11秒前
起风了发布了新的文献求助30
12秒前
zho应助yuaaaann采纳,获得10
12秒前
12秒前
昏睡的蟠桃应助忐忑的邑采纳,获得20
12秒前
caky完成签到 ,获得积分10
13秒前
搜集达人应助黑红白采纳,获得10
13秒前
龚幻梦完成签到,获得积分10
13秒前
14秒前
14秒前
星空物语完成签到,获得积分10
14秒前
醉熏的问夏完成签到 ,获得积分10
15秒前
文忉嫣完成签到,获得积分10
15秒前
星星星醒醒完成签到,获得积分10
15秒前
15秒前
16秒前
可可发布了新的文献求助10
17秒前
17秒前
从容芮应助吼吼哈哈采纳,获得50
17秒前
CipherSage应助zhangfengsheng采纳,获得10
18秒前
18秒前
JS发布了新的文献求助10
18秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844081
求助须知:如何正确求助?哪些是违规求助? 3386459
关于积分的说明 10545294
捐赠科研通 3107162
什么是DOI,文献DOI怎么找? 1711492
邀请新用户注册赠送积分活动 824113
科研通“疑难数据库(出版商)”最低求助积分说明 774478