Forecasting of transportation-related energy demand and CO2 emissions in Turkey with different machine learning algorithms

能量(信号处理) 能源需求 环境经济学 计算机科学 算法 环境科学 工程类 人工智能 经济 数学 统计
作者
Ümit Ağbulut
出处
期刊:Sustainable Production and Consumption [Elsevier BV]
卷期号:29: 141-157 被引量:58
标识
DOI:10.1016/j.spc.2021.10.001
摘要

Adverse impacts of the transportation sector on not only air quality but also economic growth of a country are nowadays well-noticed, particularly by developing countries. Today, the transportation sector is powered by burning the fossil-based fuels at more than 99% and approximately 6.5 million deaths annually occur due to air-pollution-related diseases worldwide. Therefore, knowledge of both energy demand and CO 2 emission of a country is a very significant issue in order to revise its future energy investments and policies. In this framework, three machine learning algorithms (deep learning (DL), support vector machine (SVM), and artificial neural network (ANN)) are used to forecast the transportation-based-CO 2 emission and energy demand in Turkey. The gross domestic product per capita (GDP), population, vehicle kilometer, and year are used as input parameters in the study. It is noticed that there is a very high correlation among year, economic indicators, population, vehicle kilometer, transportation-based energy demand, and CO 2 emissions. To present a better comparison, the results of these algorithms are discussed with six frequently used statistical metrics (R 2 , RMSE, MAPE, MBE, rRMSE, and MABE). For all machine learning algorithms, R 2 values are varying between 0.8639 and 0.9235, and RMSE is smaller than 5 × 10 6 tons for CO 2 emission and 2 Mtoe for energy demand. According to the classifications in the literature, the forecast results are generally categorized as "excellent" for rRMSE metric (<10%), and “high prediction accuracy” for MAPE metric (<10%). On the other hand, with two mathematical models, future energy demand and CO 2 emission arising from the transportation sector in Turkey are forecasted by the year 2050. In the results, it is forecasted that the annual growth rate for transportation-related energy demand and CO 2 emission in Turkey cumulatively rise by 3.7% and 3.65%, respectively. Both energy demand and CO 2 emissions from the transportation sector in Turkey will increase nearly 3.4 times higher in the year 2050 than those of today. In conclusion, the paper clearly reports that the future energy investments of the country should be revised, and various policies, regulations, norms, restrictions, legislations, and challenges on both energy consumption and emission mitigation from the transportation sector should be established by the policy-makers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xhnmdl发布了新的文献求助10
1秒前
xhc发布了新的文献求助10
1秒前
1秒前
1秒前
科研通AI5应助Code_Insect采纳,获得20
1秒前
可可杨发布了新的文献求助10
1秒前
坦率夕阳发布了新的文献求助20
2秒前
3秒前
3秒前
yw完成签到 ,获得积分10
4秒前
猪猪hero应助彪壮的绮烟采纳,获得10
4秒前
uuu发布了新的文献求助10
7秒前
dizi完成签到 ,获得积分10
7秒前
怕黑的冬莲关注了科研通微信公众号
7秒前
7秒前
阿刁发布了新的文献求助10
8秒前
8秒前
王PVTT发布了新的文献求助10
8秒前
英俊的铭应助琪3043采纳,获得10
8秒前
斯文败类应助一个兜兜采纳,获得10
9秒前
NexusExplorer应助飞宇采纳,获得10
9秒前
调皮的白桃完成签到,获得积分20
9秒前
10秒前
小二郎应助Lee采纳,获得10
10秒前
脑洞疼应助lyl采纳,获得30
11秒前
11秒前
melo完成签到 ,获得积分10
12秒前
13秒前
lyl完成签到,获得积分10
13秒前
afleve完成签到,获得积分10
14秒前
hivivian完成签到,获得积分10
14秒前
outman发布了新的文献求助10
15秒前
16秒前
16秒前
救救孩子救救孩子完成签到,获得积分10
17秒前
17秒前
麓生发布了新的文献求助10
18秒前
小帕菜完成签到,获得积分10
18秒前
19秒前
ly发布了新的文献求助10
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813827
求助须知:如何正确求助?哪些是违规求助? 3358242
关于积分的说明 10392842
捐赠科研通 3075520
什么是DOI,文献DOI怎么找? 1689390
邀请新用户注册赠送积分活动 812756
科研通“疑难数据库(出版商)”最低求助积分说明 767387