异质结
氧化剂
材料科学
催化作用
介孔材料
氮氧化物
化学工程
纳米结构
氧化还原
化学
纳米复合材料
纳米技术
物理化学
光电子学
冶金
有机化学
工程类
燃烧
生物化学
作者
Lei Chen,Chen Zhang,Yuxin Li,Chun‐Ran Chang,Chi He,Qiang Lü,Yunsong Yu,Pei‐Gao Duan,Zaoxiao Zhang,Rafael Luque
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2021-08-18
卷期号:11 (17): 10988-10996
被引量:54
标识
DOI:10.1021/acscatal.1c01578
摘要
Thermochemical approaches of oxidizing NO to NO2 have been considered as the critical steps governing NOx purification technologies. However, developing efficient materials with boosted NO oxidation activity and strong SO2 resistance at low temperature still remains a significant challenge. This contribution discloses a versatile and scalable methodology for the design of hollow MnO2@CeO2 heterostructures for NO oxidation. Due to its hollow core–shell nanostructure with a high density of active oxygen vacancies and improved charge-transfer efficiency induced by the heterojunction interface, the resulting material exhibits remarkable low-temperature catalytic activity in NO oxidation (T50 at 196 °C and T92 at 275 °C), achieving over 69 °C of temperature reduction in comparison with the commercial Pt/Al2O3 catalyst (T50 at 275 °C). Remarkably, the SO2 tolerance of the hollow core–shell material is greatly enhanced due to the block accessibility of the mesoporous CeO2 shell (ECeO2,SO2 = −1.78 eV vs EMnO2,SO2 = −1.04 eV). This work exemplifies an alternative perspective in the design of high-performance hollow core–shell nanostructured catalysts for atmospheric pollutant purification and industrial thermal catalysis processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI