肝细胞癌
信使核糖核酸
细胞凋亡
核糖核酸
肝癌
合理设计
耐火材料(行星科学)
纳米颗粒
癌症研究
化学
RNA干扰
生物化学
癌症
纳米技术
组合化学
抗药性
生物物理学
小干扰RNA
材料科学
生物
癌细胞
生物相容性材料
细胞生物学
癌症治疗
分子生物学
细胞毒性
作者
Yuqin Liao,Xiaodong Zeng,Xinwei Zhang,Yuanming Hu,Haoran Zhang,Qiusi Luo,Chunlin Ren,Haibing Zhou,Xiao Yang,Yuling Xiao
标识
DOI:10.1002/adma.202519473
摘要
ABSTRACT Hepatocellular carcinoma (HCC) exhibits poor prognosis and rapid resistance to sorafenib, particularly involving p53 loss and Nrf2 hyperactivation. Here, we employ machine learning (ML)‐assisted structure–activity relationship (SAR) analysis to guide the engineering of a library of 120 degradable ionizable lipids, enabling the rational design of fluorinated aromatic lipid nanoparticles (LNPs) optimized for combinatorial RNA delivery. ML‐based feature‐importance analysis prioritizes –CF 3 aromatic tails, and molecular dynamics simulations confirm that these tails enhance RNA binding and nanoparticle stability. The resulting A 2 T 5 ‐s LNPs, functionalized with lactobionic acid for selective HCC targeting, enable efficient co‐delivery of p53 mRNA and Nrf2 siRNA. This strategy restores ferroptosis and induces apoptosis in sorafenib‐resistant HCC by suppressing SLC7A11, leading to marked tumor inhibition. Our study demonstrates an ML‐assisted LNP optimization strategy, advancing precision RNA therapeutics to overcome resistance in refractory liver cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI