随机梯度下降算法
蒙皮
稳健性(进化)
计算机科学
跟踪(教育)
最大值和最小值
虚假关系
梯度下降
人工智能
计算机视觉
自由度(物理和化学)
随机优化
算法
数学优化
数学
机器学习
工程类
数学分析
物理
基因
化学
机械工程
量子力学
生物化学
人工神经网络
教育学
心理学
作者
M. Bray,Esther Koller-Meier,Pascal Müller,Luc Van Gool,Nicol N. Schraudolph
出处
期刊:Conference on Visual Media Production
日期:2004-03-15
卷期号:: 59-68
被引量:58
摘要
The main challenge of tracking articulated structures like hands is their large number of degrees of freedom (DOFs). A realistic 3D model of the human hand has at least 26 DOFs. The arsenal of tracking approaches that can track such structures fast and reliably is still very small. This paper proposes a tracker based on ‘Stochastic Meta-Descent’ (SMD) for optimizations in such highdimensional state spaces. This new algorithm is based on a gradient descent approach with adaptive and parameter-specific step sizes. The SMD tracker facilitates the integration of constraints, and combined with a stochastic sampling technique, can get out of spurious local minima. Furthermore, the integration of a deformable hand model based on linear blend skinning and anthropometrical measurements reinforce the robustness of our tracker. Experiments show the efficiency of the SMD algorithm in comparison with common optimization methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI