顶点(图论)
欧几里德几何
退化(生物学)
铰链
数学
简并能级
组合数学
欧几里德距离
拓扑(电路)
计算机科学
几何学
物理
图形
经典力学
生物信息学
量子力学
生物
作者
Scott Waitukaitis,Peter Dieleman,Martin van Hecke
出处
期刊:Physical review
[American Physical Society]
日期:2020-09-25
卷期号:102 (3)
被引量:23
标识
DOI:10.1103/physreve.102.031001
摘要
Traditional origami starts from flat surfaces, leading to crease patterns consisting of Euclidean vertices. However, Euclidean vertices are limited in their folding motions, are degenerate, and suffer from misfolding. Here we show how non-Euclidean 4-vertices overcome these limitations by lifting this degeneracy, and that when the elasticity of the hinges is taken into account, non-Euclidean 4-vertices permit higher order multistability. We harness these advantages to design an origami inverter that does not suffer from misfolding and to physically realize a tristable vertex.
科研通智能强力驱动
Strongly Powered by AbleSci AI