过氧二硫酸盐
化学
活性炭
催化作用
部分
电化学
水溶液
过硫酸盐
计时安培法
无机化学
碳糊电极
氧化还原
铁氰化物
光化学
循环伏安法
核化学
吸附
有机化学
电极
物理化学
作者
Jing Li,Kangmeng Zhu,Ruimeng Li,Xiaohui Fan,Heng Lin,Hui Zhang
出处
期刊:Chemosphere
[Elsevier BV]
日期:2020-06-17
卷期号:259: 127400-127400
被引量:35
标识
DOI:10.1016/j.chemosphere.2020.127400
摘要
Granular activated carbon (GAC) was used as catalyst for the activation of peroxydisulfate (PDS) to decolorize and degrade Acid Orange 7 (AO7) in water. EPR spectra and radical quencher experiments were employed to identify the active species for AO7 oxidation in the PDS/GAC system. Linear sweep voltammetry (LSV) and chronoamperometry test were carried out to identify the contribution of nonradical mechanism for AO7 decay. The investigation of crucial operational parameters on the decolorization indicated 100 mg/L AO7 can be almost totally decolorized in a broad range of pH. Common inorganic anions adversely affect the AO7 decolorization process and the inhibition was in the order of: HCO3− > H2PO4− > SO42− > Cl− > NO3−. UV–vis spectra showed the destruction of the aromatic moiety of AO7 molecule during the oxidation reaction of the PDS/GAC system. The transformation of nitrogen related to the azo bond in AO7 molecule in this system was observed by monitoring the released N-containing inorganic ions. Recycle experiments showed GAC cannot be reused directly but its catalytic ability can be restored by using electrochemical method.
科研通智能强力驱动
Strongly Powered by AbleSci AI