医学
内科学
急性冠脉综合征
心肌梗塞
心脏病学
甘油三酯
糖尿病
血管病学
代谢综合征
肥胖
胆固醇
内分泌学
作者
Le Wang,Hongliang Cong,Jingxia Zhang,Yuecheng Hu,Ao Wei,Zhang Yingyi,Hua Yang,Libin Ren,Wei Qi,Wenyu Li,Rui Zhang,Jinghan Xu
标识
DOI:10.1186/s12933-020-01054-z
摘要
Abstract Background The triglyceride-glucose index (TyG index) has been regarded as a reliable alternative marker of insulin resistance and an independent predictor of cardiovascular outcomes. Whether the TyG index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome (ACS) remains uncertain. The aim of this study was to investigate the prognostic value of the TyG index in patients with diabetes and ACS. Methods A total of 2531 consecutive patients with diabetes who underwent coronary angiography for ACS were enrolled in this study. Patients were divided into tertiles according to their TyG index. The primary outcomes included the occurrence of major adverse cardiovascular events (MACEs), defined as all-cause death, non-fatal myocardial infarction and non-fatal stroke. The TyG index was calculated as the ln (fasting triglyceride level [mg/dL] × fasting glucose level [mg/dL]/2). Results The incidence of MACE increased with TyG index tertiles at a 3-year follow-up. The Kaplan–Meier curves showed significant differences in event-free survival rates among TyG index tertiles (P = 0.005). Multivariate Cox hazards regression analysis revealed that the TyG index was an independent predictor of MACE (95% CI 1.201–1.746; P < 0.001). The optimal TyG index cut-off for predicting MACE was 9.323 (sensitivity 46.0%; specificity 63.6%; area under the curve 0.560; P = 0.001). Furthermore, adding the TyG index to the prognostic model for MACE improved the C-statistic value (P = 0.010), the integrated discrimination improvement value (P = 0.001) and the net reclassification improvement value (P = 0.019). Conclusions The TyG index predicts future MACE in patients with diabetes and ACS independently of known cardiovascular risk factors, suggesting that the TyG index may be a useful marker for risk stratification and prognosis in patients with diabetes and ACS.
科研通智能强力驱动
Strongly Powered by AbleSci AI