Credit scoring based on tree-enhanced gradient boosting decision trees

可解释性 计算机科学 机器学习 Boosting(机器学习) 人工智能 决策树 特征(语言学) 数据挖掘 语言学 哲学
作者
Wan’an Liu,Hong Fan,Meng Xia
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:189: 116034-116034 被引量:66
标识
DOI:10.1016/j.eswa.2021.116034
摘要

Credit scoring is an important tool for banks and lending companies to realize credit risk exposure management and gain profits. GBDTs, a group of boosting-type ensemble algorithms, have shown promising improvement for credit scoring. However, GBDT improves the credit scoring performance by iteratively modifying only the fitting target for each base classifier and invariably works on the same features, which limits the diversity of individual classifiers in GBDT; Moreover, the performance-interpretability dilemma motivated a large number of works to focus on the pursuit of high-performance ensemble strategies, which leads to the lack of explorations on the interpretability of the credit scoring models. Based on the above limitations, two tree-based augmented GBDTs (AugBoost-RFS and AugBoost-RFU) are proposed in this work for credit scoring. In the proposed methods, a step-wise feature augmentation mechanism is introduced for GBDT to enrich the diversity of individual base classifiers; Tree-based embedding technologies simplify the process of feature augmentation and inherit interpretability of GBDT. Results on 4 large-scale credit scoring datasets show AugBoost-RFS/AugBoost-RFU outperforms GBDT; Besides, supervised tree-based step-wise feature augmentation for GBDT achieves comparable results to neural network-based step-wise feature augmentation while significantly improve the augmentation efficiency. Moreover, the intrinsic global interpreted results and decision rules of tree-enhanced GBDTs, as well as the marginal contributions of features that are visualized by TreeSHAP demonstrate AugBoost-RFS/AugBoost-RFU can be good candidates for interpretable credit scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻依波发布了新的文献求助10
1秒前
1秒前
未来发布了新的文献求助10
2秒前
3秒前
丘比特应助Awei采纳,获得10
3秒前
结实小笼包完成签到 ,获得积分10
4秒前
5秒前
嘀哩嘀哩完成签到,获得积分10
5秒前
今后应助追寻依波采纳,获得10
5秒前
6秒前
李健应助蔡克东采纳,获得10
7秒前
zhouzhou发布了新的文献求助10
7秒前
丘比特应助小米采纳,获得10
8秒前
9秒前
panbl451245发布了新的文献求助10
10秒前
专注的书白完成签到,获得积分10
10秒前
忆枫完成签到,获得积分10
10秒前
qwwefe完成签到,获得积分10
11秒前
英姑应助TheTOPTOP采纳,获得10
11秒前
咻咻发布了新的文献求助10
12秒前
13秒前
星辰大海应助panbl451245采纳,获得10
13秒前
小猪发布了新的文献求助10
14秒前
14秒前
15秒前
黄橙子完成签到 ,获得积分10
15秒前
15秒前
15秒前
ywty发布了新的文献求助10
16秒前
朴实蛋挞完成签到,获得积分10
16秒前
浮游应助专注的书白采纳,获得10
16秒前
18秒前
给我个二硫碘化钾完成签到,获得积分10
18秒前
共享精神应助小猪采纳,获得10
18秒前
Lucas应助易之皙采纳,获得10
19秒前
顺顺顺顺完成签到 ,获得积分10
20秒前
20秒前
21秒前
时米米米发布了新的文献求助10
21秒前
蔡克东发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490427
求助须知:如何正确求助?哪些是违规求助? 4588992
关于积分的说明 14422782
捐赠科研通 4520985
什么是DOI,文献DOI怎么找? 2477064
邀请新用户注册赠送积分活动 1462460
关于科研通互助平台的介绍 1435280