Multi-task support vector machine with pinball loss

支持向量机 计算机科学 人工智能 二元分类 任务(项目管理) 机器学习 铰链损耗 多任务学习 模式识别(心理学) 结构化支持向量机 核(代数) 数学 组合数学 经济 管理
作者
Yunhao Zhang,Jiajun Yu,Xinyi Dong,Ping Zhong
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:106: 104458-104458 被引量:12
标识
DOI:10.1016/j.engappai.2021.104458
摘要

With the boom in machine learning, support vector machine (SVM) is widely employed in pattern recognition. However, most of SVM models concentrate on single-task learning, multi-task learning has been largely neglected. Compared with single-task learning, multi-task learning can achieve a good performance for each task by mining the shared information among tasks. In addition, loss function also plays an important role in the accuracy of SVM. Inspired by multi-task learning and the SVM with pinball loss (pin-SVM), we propose two novel multi-task support vector machines with pinball loss for binary classification, named as MTL-pin-SVM I and MTL-pin-SVM II. Both methods maximize the quantile distance for each task, which realizes less sensitive to noise and more stable for re-sampling. Moreover, MTL-pin-SVM II can use different combinations of kernel functions for different tasks, which can get better performance than other multi-task models by choosing the suitable combinations of kernel functions for different tasks. And they include the multi-task SVM with hinge loss as their special cases, which are denoted as MTL-C-SVM I and MTL-C-SVM II. The extensive experiments on multi-task datasets fully validate the validity of the proposed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助合适台灯采纳,获得10
刚刚
Eden发布了新的文献求助10
刚刚
1秒前
1秒前
么么叽发布了新的文献求助10
1秒前
SYLH应助只喝牛奶不喝酒采纳,获得10
2秒前
科研通AI5应助谦让之云采纳,获得10
2秒前
2秒前
lily完成签到,获得积分20
3秒前
小尾巴完成签到,获得积分10
3秒前
DawudShan发布了新的文献求助30
3秒前
3秒前
吧嗒完成签到,获得积分10
4秒前
5秒前
Ttong完成签到,获得积分10
5秒前
大风起兮完成签到,获得积分10
5秒前
5秒前
6秒前
匪石发布了新的文献求助10
7秒前
Eden完成签到,获得积分10
7秒前
8秒前
大胆的琳完成签到 ,获得积分10
8秒前
星星完成签到,获得积分10
9秒前
9秒前
大风起兮发布了新的文献求助10
9秒前
缺水哥完成签到,获得积分10
10秒前
10秒前
10秒前
什米发布了新的文献求助10
10秒前
jenningseastera应助malaodi采纳,获得10
11秒前
健忘书兰发布了新的文献求助10
11秒前
11秒前
shiyu发布了新的文献求助10
11秒前
只喝牛奶不喝酒完成签到,获得积分10
11秒前
那地方发布了新的文献求助30
12秒前
饭后瞌睡完成签到,获得积分10
12秒前
12秒前
12秒前
Littlerain~完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813647
求助须知:如何正确求助?哪些是违规求助? 3358007
关于积分的说明 10390954
捐赠科研通 3075296
什么是DOI,文献DOI怎么找? 1689246
邀请新用户注册赠送积分活动 812632
科研通“疑难数据库(出版商)”最低求助积分说明 767252