生物分子
胶体金
纳米技术
表面改性
材料科学
生物相容性
背景(考古学)
共轭体系
纳米颗粒
聚合物
化学
生物
物理化学
古生物学
复合材料
冶金
作者
Jin Woong Lee,Seok-Ryul Choi,Jun Hyuk Heo
标识
DOI:10.1021/acsami.1c10436
摘要
Gold nanoparticles (AuNPs) are used in various biological applications because of their small surface area-to-volume ratios, ease of synthesis and modification, low toxicity, and unique optical properties. These properties can vary significantly with changes in AuNP size, shape, composition, and arrangement. Thus, the stabilization of AuNPs is crucial to preserve the properties required for biological applications. In recent years, various polymer-based physical and chemical methods have been extensively used for AuNP stabilization. However, a new stabilization approach using biomolecules has recently attracted considerable attention. Biomolecules such as DNA, RNA, peptides, and proteins are representative of the biomoieties that can functionalize AuNPs. According to several studies, biomolecules can stabilize AuNPs in biological media; in addition, AuNP-conjugated biomolecules can retain certain biological functions. Furthermore, the presence of biomolecules on AuNPs significantly enhances their biocompatibility. This review provides a representative overview of AuNP functionalization using various biomolecules. The strategies and mechanisms of AuNP functionalization using biomolecules are comprehensively discussed in the context of various biological fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI