Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation

分割 人工智能 卷积神经网络 医学 深度学习 模式识别(心理学) 计算机科学 一致相关系数 核医学 数学 统计
作者
Bénédicte Cayot,Laurent Milot,Olivier Nempont,Anna Sesilia Vlachomitrou,Carole Langlois‐Jacques,Jérôme Dumortier,Olivier Boillot,Karine Arnaud,Thijs R.M. Barten,Joost P.H. Drenth,Pierre‐Jean Valette
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (7): 4780-4790 被引量:7
标识
DOI:10.1007/s00330-022-08549-1
摘要

This study aimed to develop and investigate the performance of a deep learning model based on a convolutional neural network (CNN) for the automatic segmentation of polycystic livers at CT imaging.This retrospective study used CT images of polycystic livers. To develop the CNN, supervised training and validation phases were performed using 190 CT series. To assess performance, the test phase was performed using 41 CT series. Manual segmentation by an expert radiologist (Rad1a) served as reference for all comparisons. Intra-observer variability was determined by the same reader after 12 weeks (Rad1b), and inter-observer variability by a second reader (Rad2). The Dice similarity coefficient (DSC) evaluated overlap between segmentations. CNN performance was assessed using the concordance correlation coefficient (CCC) and the two-by-two difference between the CCCs; their confidence interval was estimated with bootstrap and Bland-Altman analyses. Liver segmentation time was automatically recorded for each method.A total of 231 series from 129 CT examinations on 88 consecutive patients were collected. For the CNN, the DSC was 0.95 ± 0.03 and volume analyses yielded a CCC of 0.995 compared with reference. No statistical difference was observed in the CCC between CNN automatic segmentation and manual segmentations performed to evaluate inter-observer and intra-observer variability. While manual segmentation required 22.4 ± 10.4 min, central and graphics processing units took an average of 5.0 ± 2.1 s and 2.0 ± 1.4 s, respectively.Compared with manual segmentation, automated segmentation of polycystic livers using a deep learning method achieved much faster segmentation with similar performance.• Automatic volumetry of polycystic livers using artificial intelligence method allows much faster segmentation than expert manual segmentation with similar performance. • No statistical difference was observed between automatic segmentation, inter-observer variability, or intra-observer variability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄成熟完成签到,获得积分10
刚刚
zyy完成签到,获得积分10
刚刚
1秒前
在水一方应助郭漂亮采纳,获得10
1秒前
认真真真真真完成签到,获得积分10
2秒前
2秒前
SQXT应助jam采纳,获得10
3秒前
4秒前
不爱科研完成签到 ,获得积分10
5秒前
韭菜发布了新的文献求助10
6秒前
7秒前
隐形的语海完成签到,获得积分10
7秒前
诸青梦完成签到 ,获得积分10
8秒前
俭朴的天薇完成签到,获得积分10
9秒前
润润轩轩完成签到 ,获得积分10
9秒前
张承诺发布了新的文献求助10
12秒前
可问春风完成签到,获得积分10
12秒前
ljh1771完成签到,获得积分10
13秒前
zjzjzjzjzj完成签到 ,获得积分10
13秒前
zjq完成签到 ,获得积分10
13秒前
颜凝丹给林谩的求助进行了留言
14秒前
善学以致用应助韭菜采纳,获得10
14秒前
yinyin完成签到 ,获得积分10
15秒前
大模型应助科研通管家采纳,获得10
17秒前
RayLam完成签到,获得积分10
19秒前
十七完成签到 ,获得积分10
19秒前
林大胖子完成签到 ,获得积分10
19秒前
夏傥完成签到,获得积分10
19秒前
Getlogger完成签到,获得积分10
21秒前
ltf完成签到,获得积分10
22秒前
xiaofenzi完成签到,获得积分10
24秒前
JOKY完成签到 ,获得积分10
26秒前
CHANG完成签到 ,获得积分10
26秒前
Ampace小老弟完成签到 ,获得积分10
28秒前
28秒前
hh完成签到,获得积分10
29秒前
ipcy完成签到 ,获得积分10
30秒前
zxm完成签到,获得积分10
31秒前
carly完成签到 ,获得积分10
32秒前
韭菜发布了新的文献求助10
33秒前
高分求助中
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Multimodal injustices: Speech acts, gender bias, and speaker’s status 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4106192
求助须知:如何正确求助?哪些是违规求助? 3644100
关于积分的说明 11542941
捐赠科研通 3351096
什么是DOI,文献DOI怎么找? 1841209
邀请新用户注册赠送积分活动 907950
科研通“疑难数据库(出版商)”最低求助积分说明 825090