Identifying field and road modes of agricultural Machinery based on GNSS Recordings: A graph convolutional neural network approach

全球导航卫星系统应用 图形 卷积神经网络 计算机科学 领域(数学) 人工智能 模式识别(心理学) 特征(语言学) 数据挖掘 遥感 全球定位系统 数学 地理 理论计算机科学 语言学 电信 哲学 纯数学
作者
Ying Chen,Guangyuan Li,Xiaoqiang Zhang,Jiepeng Jia,Kun Zhou,Caicong Wu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107082-107082 被引量:40
标识
DOI:10.1016/j.compag.2022.107082
摘要

• A graph convolutional neural network was designed for field-road classification. • A spatio-temporal graph was constructed for a trajectory. • A graph convolution process was used to propagate features between nodes in a graph. Field-road classification that automatically identifies in-field activities or out-of-field activities is important for the activity analysis of agricultural machinery. The objective of this paper is to develop a field-road classification method based on GNSS recordings of agricultural machinery. In order to improve the accuracy of activity identification, a field-road classification algorithm for GNSS trajectories was developed by using a graph convolutional network (GCN) that utilizes spatio-temporal relationships between GNSS points. The algorithm does not require the presence of field boundary as an input. Firstly, a spatio-temporal graph was constructed for a trajectory to capture spatio-temporal relationships between each point and its neighboring points where each point was considered as a node in the graph. Secondly, a graph convolution process was applied to propagate features between nodes in the graph, and thus, the information of the points in the trajectory was aggregated to generate a feature representation for each point. Finally, the aggregated feature representations were used to identify the activities of the points. The developed method was validated by the harvesting trajectories of two crops, wheat and paddy, GCN-based field-road classification achieved 88.14% and 85.93% accuracy for the wheat data and the paddy data, respectively. Moreover, the results of the comparison demonstrated that the developed method consistently outperformed current state-of-the-art field-road classification methods by about 2% for the wheat data and about 5% for the paddy data. The GCN-based field-road classification algorithm can provide high-quality statistic cost of in-field and out-of-field activities, which can effectively support the development of operation scheduling systems for machinery management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
maidang完成签到,获得积分10
刚刚
刚刚
1秒前
hyr完成签到 ,获得积分10
1秒前
hzs完成签到,获得积分10
1秒前
1秒前
活力靖琪完成签到,获得积分10
1秒前
Hello应助小朱采纳,获得10
2秒前
紫杉完成签到,获得积分10
2秒前
FashionBoy应助immoral采纳,获得10
3秒前
知行合一完成签到 ,获得积分10
4秒前
栾小鱼完成签到,获得积分10
4秒前
djbj2022完成签到,获得积分10
5秒前
浮游应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
盛开的芒果完成签到,获得积分10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
Orange应助科研通管家采纳,获得10
7秒前
庄默羽完成签到,获得积分10
7秒前
7秒前
853225598完成签到,获得积分10
8秒前
李柯为发布了新的文献求助10
8秒前
ScarlettU完成签到,获得积分10
8秒前
cst完成签到,获得积分10
8秒前
8秒前
岩追研完成签到,获得积分10
9秒前
9秒前
Hollen完成签到 ,获得积分10
9秒前
XiaoMaomi完成签到,获得积分10
10秒前
10秒前
科研通AI6应助落后乐天采纳,获得10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5106642
求助须知:如何正确求助?哪些是违规求助? 4316124
关于积分的说明 13445827
捐赠科研通 4145111
什么是DOI,文献DOI怎么找? 2271542
邀请新用户注册赠送积分活动 1273874
关于科研通互助平台的介绍 1211626