密度矩阵重整化群
表面跳跃
矩阵乘积状态
统计物理学
密度矩阵
物理
量子力学
量子动力学
量子
矩阵乘法
化学
作者
Jiajun Ren,Weitang Li,Tong Jiang,Yuanheng Wang,Zhigang Shuai
摘要
Abstract The simulations of spectroscopy and quantum dynamics are of vital importance to the understanding of the electronic processes in complex systems, including the radiative/radiationless electronic relaxation relevant for optical emission, charge/energy transfer in molecular aggregates related to carrier mobility in organic materials, as well as photovoltaic and thermoelectric conversion, light‐harvesting and spin transport, and so forth. In recent years, time‐dependent density matrix renormalization group (TD‐DMRG) has emerged as a general, numerically accurate and efficient method for high‐dimensional full‐quantum dynamics. This review will cover the fundamental algorithms of TD‐DMRG in the modern framework of matrix product states (MPS) and matrix product operators (MPO), including the basic algebra with respect to MPS and MPO, the novel time evolution schemes to propagate MPS, and the automated MPO construction algorithm to encode generic Hamiltonian. Most importantly, the proposed method can handle the mixed state density matrix at finite temperature, enabling quantum statistical description for molecular aggregates. We demonstrate the performance of TD‐DMRG by benchmarking with the current state‐of‐the‐art methods for simulating quantum dynamics of the spin‐boson model and the Frenkel–Holstein(–Peierls) model. As applications of TD‐DMRG to real‐world problems, we present theoretical investigations of carrier mobility and spectral function of rubrene crystal, and the radiationless decay rate of azulene with an anharmonic potential energy surface. This article is categorized under: Theoretical and Physical Chemistry > Statistical Mechanics Theoretical and Physical Chemistry > Reaction Dynamics and Kinetics Software > Simulation Methods
科研通智能强力驱动
Strongly Powered by AbleSci AI