Automatic visual defects inspection of wind turbine blades via YOLO-based small object detection approach

计算机科学 人工智能 卷积神经网络 目标检测 稳健性(进化) 计算机视觉 涡轮机 机器视觉 深度学习 可靠性(半导体) 特征提取 模式识别(心理学) 工程类 机械工程 生物化学 化学 功率(物理) 物理 量子力学 基因
作者
Zifeng Qiu,Shuangxin Wang,Zeng Zhao-xi,Dingli Yu
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:28 (04): 1-1 被引量:39
标识
DOI:10.1117/1.jei.28.4.043023
摘要

Regular inspection of wind turbine blades (WTBs), especially the detection of tiny defects, is necessary to maintain safe operation of wind turbine systems. However, current detections are inefficient and subjective because they are conducted merely by human inspectors. An autonomous visual inspection system is proposed in this paper for WTBs, in which a deep learning framework is developed by combining the convolutional neural network (CNN) and the you only look once (YOLO) model. To achieve practically acceptable detection accuracy for small-sized defects on the WTBs, a YOLO-based small object detection approach (YSODA) using a multiscale feature pyramid is proposed by amalgamating features of more layers. To evaluate the proposed YSODA, a database including 23,807 images labeled for three types of defect—crack, oil pollution, and sand inclusion, is developed. Then, the YSODA is with its architecture modified, and is trained, validated, and tested using the images from the database to provide autonomous and accurate visual inspection. After training and testing, resulting detection accuracy reaches 92.7%, 90.7%, and 90.3% for the three types of defect with the average accuracy being 91.3%. The robustness of the trained YSODA is demonstrated and verified in detecting small-sized defects. It is also compared with that of the traditional CNN-based and machine learning methods by applying to a real WTB system, which proved that the proposed YSODA is superior to existing approaches in terms of detection accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助yy采纳,获得10
1秒前
2秒前
ting发布了新的文献求助10
2秒前
2秒前
窦嘉懿完成签到 ,获得积分10
3秒前
3秒前
Lucas应助gg采纳,获得10
4秒前
4秒前
隔壁老六发布了新的文献求助10
4秒前
lemon完成签到,获得积分10
4秒前
可爱的羽毛完成签到,获得积分10
5秒前
搞怪玩家发布了新的文献求助10
5秒前
wellshine完成签到,获得积分10
6秒前
sure完成签到 ,获得积分20
6秒前
爆米花应助sdl采纳,获得10
7秒前
白白嫩嫩发布了新的文献求助60
7秒前
8秒前
烂漫草莓完成签到,获得积分10
8秒前
8秒前
田様应助单薄的雪兰采纳,获得10
8秒前
9秒前
senyusing完成签到,获得积分10
9秒前
负责的靖琪完成签到 ,获得积分10
9秒前
EmmaLin完成签到,获得积分10
9秒前
李爱国应助淡然的衣采纳,获得10
9秒前
卓荦完成签到,获得积分10
10秒前
10秒前
Windfall发布了新的文献求助10
10秒前
宝海青完成签到,获得积分10
10秒前
桐桐应助莫道桑榆晚采纳,获得10
12秒前
12秒前
12秒前
充电宝应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
冰魂应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828567
求助须知:如何正确求助?哪些是违规求助? 3370964
关于积分的说明 10465587
捐赠科研通 3090872
什么是DOI,文献DOI怎么找? 1700578
邀请新用户注册赠送积分活动 817907
科研通“疑难数据库(出版商)”最低求助积分说明 770588