细胞生物学
MAPK/ERK通路
蛋白激酶A
p38丝裂原活化蛋白激酶
细胞外基质
基因敲除
生物
秀丽隐杆线虫
激酶
三肽
信号转导
下调和上调
化学
生物化学
基因
氨基酸
作者
Yukino Morikiri,Eri Matsuta,Hideki Inoue
标识
DOI:10.1016/j.bbrc.2018.10.044
摘要
The skin consists mostly of extracellular matrix (ECM) composed mainly of collagen, which provides a protective barrier from the environment. The skin continuously experiences harmful stress and damage. As aging progresses, the expression of various genes declines, and physiological functional deterioration occurs. The reduction of collagen accompanying aging impairs the barrier function of the skin and weakens protection from stressors. In the nematode Caenorhabditis elegans, ECM proteins turn over during aging. Older worms of longevity mutants exhibit increased collagen expression, whereas knockdown of collagen genes shortens lifespan. However, it is unclear whether the progression of aging can be delayed by increasing collagen production via an external stimulus. In this study, we examined the effects of collagen tripeptide (CTP), a collagen-derived compound, on lifespan and aging. Our results showed that CTP upregulated collagen genes via the p38 mitogen-activated protein kinase (MAPK)/SKN-1 pathway. Moreover, CTP extended lifespan and delayed aging through p38 MAPK/SKN-1 pathway. In addition, CTP also induced collagen expression via the p38 MAPK pathway in mammals. Our findings supported that external stimuli such as CTP could promote ECM youthfulness using a conserved signaling pathway, thereby contributing to suppression of aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI