Assessing Performance and Clinical Usefulness in Prediction Models With Survival Outcomes: Practical Guidance for Cox Proportional Hazards Models

比例危险模型 医学 重症监护医学 医学物理学 内科学
作者
David J. McLernon,Daniele Giardiello,Ben Van Calster,Laure Wynants,Nan van Geloven,Maarten van Smeden,Terry M. Therneau,Ewout W. Steyerberg,David J. McLernon,Daniele Giardiello,Ben Van Calster,Laure Wynants,Nan van Geloven,Maarten van Smeden,Terry M. Therneau,Ewout W. Steyerberg,Patrick M. Bossuyt,Tom Boyles,Gary S. Collins,Kathleen Karr
出处
期刊:Annals of Internal Medicine [American College of Physicians]
卷期号:176 (1): 105-114 被引量:75
标识
DOI:10.7326/m22-0844
摘要

Risk prediction models need thorough validation to assess their performance. Validation of models for survival outcomes poses challenges due to the censoring of observations and the varying time horizon at which predictions can be made. This article describes measures to evaluate predictions and the potential improvement in decision making from survival models based on Cox proportional hazards regression. As a motivating case study, the authors consider the prediction of the composite outcome of recurrence or death (the "event") in patients with breast cancer after surgery. They developed a simple Cox regression model with 3 predictors, as in the Nottingham Prognostic Index, in 2982 women (1275 events over 5 years of follow-up) and externally validated this model in 686 women (285 events over 5 years). Improvement in performance was assessed after the addition of progesterone receptor as a prognostic biomarker. The model predictions can be evaluated across the full range of observed follow-up times or for the event occurring by the end of a fixed time horizon of interest. The authors first discuss recommended statistical measures that evaluate model performance in terms of discrimination, calibration, or overall performance. Further, they evaluate the potential clinical utility of the model to support clinical decision making according to a net benefit measure. They provide SAS and R code to illustrate internal and external validation. The authors recommend the proposed set of performance measures for transparent reporting of the validity of predictions from survival models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kikisman发布了新的文献求助10
1秒前
孤独的南松完成签到,获得积分10
1秒前
1秒前
zyjyd发布了新的文献求助10
1秒前
秀莉发布了新的文献求助10
2秒前
兴奋的凝丝完成签到,获得积分10
2秒前
暴躁小鸟完成签到,获得积分10
2秒前
pcr163应助舒适路人采纳,获得30
3秒前
ting完成签到,获得积分20
3秒前
斯文败类应助ddz采纳,获得10
4秒前
4秒前
5秒前
5秒前
大马哈鱼发布了新的文献求助10
5秒前
搜集达人应助涣若冰释采纳,获得10
6秒前
LL完成签到,获得积分10
6秒前
思源应助11采纳,获得10
6秒前
研友_VZG7GZ应助11采纳,获得10
6秒前
隐形曼青应助11采纳,获得10
7秒前
李健的小迷弟应助11采纳,获得10
7秒前
bkagyin应助如意草丛采纳,获得10
7秒前
可爱的函函应助11采纳,获得10
7秒前
思源应助11采纳,获得10
7秒前
orixero应助11采纳,获得10
7秒前
今后应助11采纳,获得10
7秒前
彭于晏应助11采纳,获得10
7秒前
Jasper应助11采纳,获得10
7秒前
QiranSheng发布了新的文献求助10
7秒前
我ppp完成签到 ,获得积分10
7秒前
8秒前
伶俐惜萱发布了新的文献求助10
9秒前
脑洞疼应助lonely采纳,获得10
10秒前
10秒前
10秒前
10秒前
安详的飞烟完成签到,获得积分10
10秒前
科目三应助zyjyd采纳,获得10
10秒前
xwc完成签到,获得积分10
11秒前
11秒前
Almond发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786651
求助须知:如何正确求助?哪些是违规求助? 3332319
关于积分的说明 10255052
捐赠科研通 3047657
什么是DOI,文献DOI怎么找? 1672658
邀请新用户注册赠送积分活动 801463
科研通“疑难数据库(出版商)”最低求助积分说明 760204