Thermoplasmonic Regulation and In Situ Detection of Biomolecules with a Photothermal-Enhanced Plasmonic Biosensing System

光热治疗 生物传感器 生物分子 纳米技术 等离子体子 原位 材料科学 化学 光电子学 有机化学
作者
Guangyu Qiu,Linlin Liu,Danhua Wang,Fei He,Min Gao,Li Lin,Jian Ye,Jing Wang,Guang‐Zhong Yang
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c01041
摘要

Label-free biosensing via plasmonic near-fields is a promising tool for quantitative analysis of biomolecular substances for disease diagnosis, pathogen biodefense, and environmental monitoring. For complex samples, however, the competence of molecular sensing with plasmonics is hampered by nonspecific interferences. The near-field thermoplasmonic effect, characterized by an interrelated and synergistic phenomenon of Localized Surface Plasmon Resonance (LSPR), empowers the potential multifunctionality of plasmonic biosensing. This work presented the photothermal-enhanced plasmonic (PTEP) sensing system, which enabled near-field photothermal heating regulation, in situ temperature monitoring, biomolecular regulation, and parallel biosensing at the plasmonic interface. The photothermal near-fields constructed through homogenized laser excitation were characterized and thermoregulated in situ by the PTEP system with a high spatiotemporal resolution. Notably, the proposed PTEP biosensor system exhibited improved sensitivity attributed to the thermoplasmonic-enhanced refractive index contrast. Moreover, precise spatiotemporal programming of the thermoplasmonic field contributed to active antifouling and specific identification of target molecules. Based on the PTEP biosensors, a thermoplasmonic biosensing strategy was proposed for rapid analysis of trace IL-6 molecules in complex cerebrospinal fluid samples from mouse models, with a detection limit down to 0.1 pM. Our proposed PTEP biosensing method offers a versatile and adaptable strategy that potentially enhances the functionality and utility of nanoplasmonic biosensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪聪过矣发布了新的文献求助20
1秒前
bin完成签到,获得积分10
1秒前
JamesPei应助松花蛋采纳,获得10
1秒前
科研通AI2S应助XXY采纳,获得10
2秒前
xyl完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
无情平松完成签到,获得积分10
5秒前
Orange应助周周采纳,获得10
5秒前
7秒前
坦率抽屉完成签到 ,获得积分10
7秒前
无敌万达阿迪萨完成签到,获得积分20
8秒前
美好斓发布了新的文献求助10
8秒前
9秒前
10秒前
drinkfish完成签到,获得积分10
12秒前
汉堡包应助科研通管家采纳,获得30
12秒前
12秒前
12秒前
一二发布了新的文献求助10
12秒前
12秒前
老郭发布了新的文献求助10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
一一应助科研通管家采纳,获得10
13秒前
陈昕炜发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
标致秋尽关注了科研通微信公众号
17秒前
hh完成签到,获得积分10
18秒前
19秒前
JEFF发布了新的文献求助10
20秒前
英俊的铭应助陈昕炜采纳,获得30
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
21秒前
21秒前
21秒前
大模型应助呆呆采纳,获得10
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870749
求助须知:如何正确求助?哪些是违规求助? 3412885
关于积分的说明 10681633
捐赠科研通 3137284
什么是DOI,文献DOI怎么找? 1730852
邀请新用户注册赠送积分活动 834413
科研通“疑难数据库(出版商)”最低求助积分说明 781154