Beyond Static Boundaries: Unraveling Temporal Overlapping Communities with Information Bottleneck Guidance

瓶颈 信息瓶颈法 计算机科学 数据科学 人工智能 聚类分析 嵌入式系统
作者
Moli Lu,Linhao Luo,Xiaofeng Zhang
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
标识
DOI:10.1145/3716391
摘要

Community detection has gained significant research interest within the data mining field. It involves identifying subsets of nodes with dense internal connections and sparse external connections. Most studies on community detection focus solely on identifying non-overlapping communities in a static graph. However, in practice, communities often overlap, and the structure of the graphs is dynamically evolving. This dynamic nature leads to community changes and poses a significant challenge in detecting overlapping communities on temporal graphs (T-OCD). While graph neural networks have shown great performance in generating node representations for community detection, learning representations that capture temporal graph structures and support overlapping community detection remain an open question. To address these challenges, we present T-OCDIB , a novel approach for T emporal O verlapping C ommunity D etection guided by I nformation B ottleneck. Specifically, we first propose an overlapping community detection approach for static graphs, under the guidance of a community-oriented information bottleneck. This approach allows us to learn discriminative node representations specific to each community, facilitating the detection of overlapping communities. Following this, we extend this method to temporal graphs by presenting a temporal convolution module. This module uses adaptive weight matrices based on evolving graph structures to capture temporal dependencies for community detection. Additionally, to promote smooth transitions between consecutive communities, we introduce a temporal smoothing module to further constrain changes in community structure. We evaluate the proposed approach on both real-world and synthetic temporal networks. Experimental results illustrate the superiority of T-OCDIB over other community detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听语说完成签到,获得积分10
刚刚
烟花应助YANG采纳,获得10
刚刚
仁清完成签到,获得积分10
1秒前
Jasmine发布了新的文献求助10
1秒前
Wanderer完成签到,获得积分10
1秒前
包容友儿完成签到,获得积分10
1秒前
叁叁肆完成签到,获得积分10
2秒前
烂漫凡柔完成签到,获得积分10
3秒前
研友_VZG7GZ应助Beatrice采纳,获得10
3秒前
田様应助怡然若雁采纳,获得30
3秒前
别管我很烦完成签到,获得积分10
3秒前
3秒前
ZXK完成签到 ,获得积分10
3秒前
自强不息发布了新的文献求助10
4秒前
yy完成签到,获得积分10
4秒前
奋斗发布了新的文献求助10
5秒前
5秒前
XJTU_jyh完成签到,获得积分10
5秒前
烂漫凡柔发布了新的文献求助10
6秒前
6秒前
仁清发布了新的文献求助10
6秒前
找啊找完成签到,获得积分10
6秒前
Illich完成签到,获得积分10
7秒前
小兵医生完成签到,获得积分10
7秒前
宁羽1完成签到,获得积分10
8秒前
8秒前
科研通AI6.1应助yy采纳,获得10
8秒前
SSS发布了新的文献求助10
8秒前
1111完成签到,获得积分10
8秒前
niuniu完成签到,获得积分10
9秒前
YH完成签到,获得积分10
9秒前
9秒前
lwh完成签到,获得积分10
9秒前
大鹅莓烦恼完成签到,获得积分10
9秒前
AI_Medical完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
innate发布了新的文献求助20
11秒前
清茶旧友发布了新的文献求助10
11秒前
敏感的凝天完成签到,获得积分10
11秒前
姜友舜完成签到 ,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5748428
求助须知:如何正确求助?哪些是违规求助? 5452645
关于积分的说明 15360266
捐赠科研通 4887957
什么是DOI,文献DOI怎么找? 2628186
邀请新用户注册赠送积分活动 1576599
关于科研通互助平台的介绍 1533468