Artificial intelligence image analysis for Hounsfield units in preoperative thoracolumbar CT scans: an automated screening for osteoporosis in patients undergoing spine surgery

组内相关 霍恩斯菲尔德秤 Sørensen–骰子系数 核医学 医学 皮尔逊积矩相关系数 相关系数 分割 胸椎 骨质疏松症 放射科 卡帕 人工智能 腰椎 数学 统计 计算机断层摄影术 计算机科学 图像分割 再现性 病理 腰椎 几何学
作者
Emily Feng,Nisha Jayasuriya,Karim Rizwan Nathani,Konstantinos Katsos,Laura A. Machlab,Graham W. Johnson,Brett A. Freedman,Mohamad Bydon
出处
期刊:Journal of neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:: 1-8
标识
DOI:10.3171/2025.1.spine24900
摘要

OBJECTIVE This study aimed to develop an artificial intelligence (AI) model for automatically detecting Hounsfield unit (HU) values at the L1 vertebra in preoperative thoracolumbar CT scans. This model serves as a screening tool for osteoporosis in patients undergoing spine surgery, offering an alternative to traditional bone mineral density measurement methods like dual-energy x-ray absorptiometry. METHODS The authors utilized two CT scan datasets, comprising 501 images, which were split into training, validation, and test subsets. The nnU-Net framework was used for segmentation, followed by an algorithm to calculate HU values from the L1 vertebra. The model’s performance was validated against manual HU calculations by expert raters on 56 CT scans. Statistical measures included the Dice coefficient, Pearson correlation coefficient, intraclass correlation coefficient (ICC), and Bland-Altman plots to assess the agreement between AI and human-derived HU measurements. RESULTS The AI model achieved a high Dice coefficient of 0.91 for vertebral segmentation. The Pearson correlation coefficient between AI-derived HU and human-derived HU values was 0.96, indicating strong agreement. ICC values for interrater reliability were 0.95 and 0.94 for raters 1 and 2, respectively. The mean difference between AI and human HU values was 7.0 HU, with limits of agreement ranging from −21.1 to 35.2 HU. A paired t-test showed no significant difference between AI and human measurements (p = 0.21). CONCLUSIONS The AI model demonstrated strong agreement with human experts in measuring HU values, validating its potential as a reliable tool for automated osteoporosis screening in spine surgery patients. This approach can enhance preoperative risk assessment and perioperative bone health optimization. Future research should focus on external validation and inclusion of diverse patient demographics to ensure broader applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流北爷完成签到,获得积分10
刚刚
qianshu完成签到,获得积分0
刚刚
大模型应助安静的剑采纳,获得10
刚刚
雨0926应助LCL采纳,获得20
刚刚
陈陈完成签到,获得积分10
1秒前
牢牛马完成签到 ,获得积分10
1秒前
哆啦的空间站应助Brocade采纳,获得10
1秒前
mysilicon完成签到,获得积分10
1秒前
苏__完成签到 ,获得积分10
1秒前
1秒前
VV完成签到,获得积分10
1秒前
2秒前
Poik完成签到,获得积分10
2秒前
年轻的安筠完成签到 ,获得积分20
3秒前
安夏发布了新的文献求助10
3秒前
4秒前
4秒前
casaboy完成签到,获得积分10
4秒前
鱿鱼完成签到,获得积分10
4秒前
新新完成签到,获得积分10
5秒前
Huang_Liuying完成签到,获得积分20
5秒前
小二郎应助霸气的幻梦采纳,获得10
5秒前
5秒前
做个梦给你完成签到,获得积分10
5秒前
33月完成签到 ,获得积分10
5秒前
5秒前
cleverpeach完成签到,获得积分10
5秒前
5秒前
林钰浩发布了新的文献求助10
6秒前
Clarence完成签到,获得积分10
6秒前
6秒前
ooooozhubi完成签到 ,获得积分10
6秒前
欢呼的雨琴完成签到 ,获得积分10
6秒前
7秒前
GEeZiii完成签到,获得积分10
7秒前
nessa完成签到 ,获得积分10
7秒前
7秒前
星辰完成签到,获得积分10
8秒前
点点完成签到 ,获得积分10
8秒前
zcl应助gengfu采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Nonthermal Processing Technologies for Food 800
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4985574
求助须知:如何正确求助?哪些是违规求助? 4235995
关于积分的说明 13193498
捐赠科研通 4029173
什么是DOI,文献DOI怎么找? 2204210
邀请新用户注册赠送积分活动 1216184
关于科研通互助平台的介绍 1133922