作者
Wen-Tao Fang,Qianqian Song,Han Luo,Rui Wang,Fang Cheng-wu
摘要
Background: This study aims to develop a fingerprint analysis method using ultra-high performance liquid chromatography (UPLC) for Moutan Cortex sourced from different regions. The objective is to establish quality control standards validated through the integration of chemometric methods and component structure theory. Methods: The mobile phase for UPLC consisted of acetonitrile (A) and a 0.1% aqueous formic acid solution (B), with gradient elution set as follows: 0–1 min, 8% A → 15% A; 1–8 min, 15% A → 18% A; 8–10 min, 18% A → 30% A; 10–15 min, 30% A → 35% A; 15–20 min, 35% A → 85% A; 20–21 min, 85% A → 8% A; and 21–26 min, 8% A → 8% A. Chemical markers significantly affecting Moutan Cortex from various regions were screened, and their identification was based on comparison with reference materials and content determination. Results: A total of 15 chemical markers were identified, including gallic acid, oxypaeoniflorin, catechin, methyl gallate, paeonolide, apiopaeonoside, albiflorin, paeoniflorin, benzoic acid, 1,2,3,6-tetra-O-galloyl-D-glucose, 1,2,3,4,6-pentagalloylglucose, mudanpioside C, benzoyloxypaeoniflorin, benzoylpaeoniflorin, and paeonol. These markers align with component structure theory, allowing for an analysis of the structural characteristics of Moutan Cortex from different regions. Conclusions: The findings provide a valuable reference for the future quality evaluation of traditional Chinese medicine preparations, enhancing the understanding of the material basis components in Moutan Cortex from diverse sources.