A gradient boosting tree model for multi-department venous thromboembolism risk assessment with imbalanced data

计算机科学 机器学习 决策树 梯度升压 人工智能 人口 树(集合论) 任务(项目管理) 数据挖掘 风险评估 Boosting(机器学习) 医学 随机森林 环境卫生 数学分析 计算机安全 经济 管理 数学
作者
Handong Ma,Zhecheng Dong,Mingcheng Chen,Wenbo Sheng,Yao Li,Weinan Zhang,Shaodian Zhang,Yong Yu
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:134: 104210-104210 被引量:4
标识
DOI:10.1016/j.jbi.2022.104210
摘要

Venous thromboembolism (VTE) is the world's third most common cause of vascular mortality and a serious complication from multiple departments. Risk assessment of VTE guides clinical intervention in time and is of great importance to in-hospital patients. Traditional VTE risk assessment methods based on scaling tools, which always require rules carefully designed by human experts, are difficult to apply to large-population scenarios since the manually designed rules are not guaranteed to be accurate to all populations. In contrast, with the development of the electronic health record (EHR) datasets, data-driven machine-learning-based risk assessment methods have proven superior predictability in many studies in recent years. This paper uses the gradient boosting tree model to study the VTE risk assessment problem with multi-department data. There exist two distinct characteristics of VTE data collected at the level of the entire hospital: its wide distribution and heterogeneity across multiple departments. To this end, we consider the prediction task over multiple departments as a multi-task learning process, and introduce the algorithm of a task-aware tree-based method TSGB to tackle the multi-task prediction problem. Although the introduction of multi-task learning improves overall across-department performance, we reveal the problem of task-wise performance decline while dealing with imbalanced VTE data volume. According to the analysis, we finally propose two variants of TSGB to alleviate the problems and further boost the prediction performance. Compared with state-of-the-art rule-based and multi-task tree-based methods, the experimental results show the proposed methods not only improve the overall across-department AUC performance effectively, but also ensure the improvement of performance over every single department prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明萤完成签到 ,获得积分10
刚刚
HHH完成签到,获得积分10
刚刚
1秒前
Uki完成签到,获得积分10
1秒前
小冠军完成签到,获得积分10
1秒前
芒果完成签到,获得积分10
1秒前
2秒前
hiipaige完成签到,获得积分10
2秒前
大巧若拙完成签到,获得积分10
2秒前
Mark完成签到,获得积分10
3秒前
前蹄儿完成签到,获得积分10
3秒前
ZBM完成签到,获得积分10
4秒前
优雅的平安完成签到 ,获得积分10
4秒前
4秒前
上山石头完成签到,获得积分10
4秒前
5秒前
旺仔仔完成签到,获得积分10
5秒前
wenwenjlu发布了新的文献求助10
6秒前
欧科狗完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Survive完成签到,获得积分10
8秒前
林生完成签到 ,获得积分10
9秒前
怕热除铁完成签到,获得积分10
9秒前
adamchris完成签到,获得积分10
9秒前
tang完成签到,获得积分10
9秒前
waerteyang发布了新的文献求助10
10秒前
ethyxwat完成签到,获得积分10
10秒前
只想发SCI完成签到,获得积分10
10秒前
Grape完成签到,获得积分10
11秒前
平常的不评完成签到,获得积分10
11秒前
1107任务报告完成签到,获得积分10
12秒前
雷欧奥特曼完成签到,获得积分10
12秒前
Chen完成签到 ,获得积分10
12秒前
化渣完成签到,获得积分10
13秒前
哈哈完成签到,获得积分10
13秒前
飞向火星完成签到,获得积分10
13秒前
zzz完成签到,获得积分10
14秒前
ldgsd完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079983
求助须知:如何正确求助?哪些是违规求助? 4298027
关于积分的说明 13389776
捐赠科研通 4121516
什么是DOI,文献DOI怎么找? 2257145
邀请新用户注册赠送积分活动 1261455
关于科研通互助平台的介绍 1195563