Intensive care unit nursing workload estimation in smart hospitals

工作量 文档 背景(考古学) 护理部 计算机科学 探索性研究 再培训 医疗保健 运营管理 医学 业务 工程类 社会学 古生物学 国际贸易 操作系统 生物 经济 程序设计语言 经济增长 人类学
作者
René Nolio Santa Cruz,Hugo Vaz Sampaio,Carlos Becker Westphall,Maximiliano Dutra de Camargo,Daniela Couto Carvalho Barra
出处
期刊:Journal of Health Organisation and Management [Emerald (MCB UP)]
卷期号:38 (8): 1146-1162
标识
DOI:10.1108/jhom-01-2024-0019
摘要

Purpose The objectives of the proposed model are: aiding nursing staff in documentation tasks, which can be onerous and stressful; and helping management by offering an estimate of the nursing workload, which can be considered for administrative purposes, such as staff scheduling. Design/methodology/approach An exploratory-descriptive study was conducted in order to identify, investigate, and describe the problem of documenting nursing activities and workload estimation in an intensive care unit. Technological solutions were explored, and models were proposed to address these issues. Findings Cross-dataset experiments were performed, and the model was able to offer an adequate estimate of the nursing workload. The results suggest that continuous retraining is essential for maintaining high accuracy. While the proposed model was considered in the context of an adult ICU, it can be adapted to other contexts, such as elderly care. Research limitations/implications While the proposed solution seems promising, further research is required, such as deploying this system in an ICU and facing challenges in the areas of computer security, medical ethics, and patient data privacy. More patients’ variables could also be collected to improve the workload estimates. Originality/value Nursing workload assessment is critical to improve the cost-benefit ratio in health care, offer high-quality patient care, and reduce unnecessary expenses, and this process is usually manual. An automated device can automatically document the amount of time spent in patient care activities in a more transparent, efficient, and accurate manner, freeing staff for more urgent activities and keeping management better informed about day-to-day nursing operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
等待的谷波完成签到 ,获得积分10
刚刚
脉动发布了新的文献求助10
刚刚
机智热狗发布了新的文献求助10
1秒前
xxxxxx发布了新的文献求助10
1秒前
灵巧冰露发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
rock完成签到,获得积分10
2秒前
学问完成签到,获得积分10
2秒前
情怀应助我又来了采纳,获得10
3秒前
Akim应助邓佩雨采纳,获得10
3秒前
我是老大应助哈哈采纳,获得10
3秒前
Aurora发布了新的文献求助10
3秒前
3秒前
4秒前
玉玉完成签到,获得积分20
4秒前
5秒前
5秒前
打打应助大力荷花采纳,获得10
5秒前
隐形曼青应助斯文的傲珊采纳,获得10
5秒前
abb驳回了传奇3应助
5秒前
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
12333完成签到,获得积分10
6秒前
飞飞应助科研通管家采纳,获得10
6秒前
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
时时发布了新的文献求助10
6秒前
zgw完成签到,获得积分20
6秒前
南宫清涟给南宫清涟的求助进行了留言
6秒前
从容问寒完成签到 ,获得积分10
6秒前
大个应助科研通管家采纳,获得20
6秒前
1774181866完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
SciGPT应助调皮嫣娆采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667738
求助须知:如何正确求助?哪些是违规求助? 4887401
关于积分的说明 15121482
捐赠科研通 4826512
什么是DOI,文献DOI怎么找? 2584135
邀请新用户注册赠送积分活动 1538152
关于科研通互助平台的介绍 1496238