已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new deep learning-based approach for concrete crack identification and damage assessment

结构工程 鉴定(生物学) 材料科学 计算机科学 工程类 法律工程学 生物 植物
作者
Fuyan Guo,Qi Cui,Hongwei Zhang,Yue Wang,Zhang Huidong,Xinqun Zhu,Jiao Chen
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
卷期号:27 (13): 2303-2318
标识
DOI:10.1177/13694332241266535
摘要

Concrete building structures are prone to cracking as they are subjected to environmental temperatures, freeze-thaw cycles, and other operational environmental factors. Failure to detect cracks in the key building structure at the early stage can result in serious accidents and associated economic losses. A new method using the SE-U-Net model based on a conditional generative adversarial network (CGAN) has been developed to identify small cracks in concrete structures in this paper. This proposed method was a pixel-level U-Net model based on a generative network, that was integrated the original convolutional layer with an attention mechanism, and an SE module in the jump connection section was added to improve the identifiability of the model. The discriminative network compared the generated images with real images using the PatchGAN model. Through the adversarial training of generator and discriminator, the performance of generator in crack image segmentation task is improved, and the trained generation network is used to segment cracks. In damage assessments, the crack skeleton was represented by the individual pixel width and recognized using the binary morphological crack skeleton method, in which the final length, area, and average width of the crack could be determined through the geometric correction index. The results showed that compared with other methods, the proposed method could better identify subtle pixel-level cracks, and the identification accuracy is 98.48%. These methods are of great significance for the identification of cracks and the damage assessment of concrete structures in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HHHHHH发布了新的文献求助10
刚刚
hgl完成签到,获得积分10
刚刚
夏默霜完成签到 ,获得积分10
3秒前
风中的青完成签到,获得积分10
7秒前
虚心的渊思完成签到 ,获得积分10
9秒前
9秒前
蒲公英完成签到 ,获得积分10
10秒前
舒心抽屉完成签到 ,获得积分10
11秒前
靓丽寄文完成签到 ,获得积分10
11秒前
夜晚不可以没有星星完成签到,获得积分10
12秒前
dopamine发布了新的文献求助10
12秒前
小鲤鱼完成签到 ,获得积分10
14秒前
15秒前
17秒前
dopamine完成签到,获得积分10
18秒前
土豪的摩托完成签到 ,获得积分10
18秒前
19秒前
suicone完成签到,获得积分10
19秒前
刻苦紫文完成签到 ,获得积分10
20秒前
lbyscu完成签到 ,获得积分10
23秒前
23秒前
25秒前
pinklay发布了新的文献求助10
26秒前
27秒前
少年完成签到,获得积分10
28秒前
不器君发布了新的文献求助10
29秒前
30秒前
TheSilencer完成签到 ,获得积分10
31秒前
一个发布了新的文献求助30
35秒前
233完成签到 ,获得积分10
38秒前
Vince完成签到 ,获得积分10
38秒前
小朵完成签到 ,获得积分10
38秒前
李爱国应助nini采纳,获得10
38秒前
小蘑菇应助平常心采纳,获得10
39秒前
111完成签到 ,获得积分10
44秒前
小王完成签到,获得积分10
44秒前
45秒前
tangzanwayne发布了新的文献求助30
45秒前
45秒前
在水一方应助Chao采纳,获得10
45秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845379
求助须知:如何正确求助?哪些是违规求助? 3387609
关于积分的说明 10550197
捐赠科研通 3108359
什么是DOI,文献DOI怎么找? 1712543
邀请新用户注册赠送积分活动 824461
科研通“疑难数据库(出版商)”最低求助积分说明 774808