Method for Classifying Schizophrenia Patients Based on Machine Learning

脑电图 医学 精神分裂症(面向对象编程) 人工智能 机器学习 Boosting(机器学习) 计算机科学 精神科
作者
C. González Soria,Yoel Arroyo,Ana Torres,Miguel Á. Redondo,C. Basar,J. Mateo
出处
期刊:Journal of Clinical Medicine [Multidisciplinary Digital Publishing Institute]
卷期号:12 (13): 4375-4375 被引量:7
标识
DOI:10.3390/jcm12134375
摘要

Schizophrenia is a chronic and severe mental disorder that affects individuals in various ways, particularly in their ability to perceive, process, and respond to stimuli. This condition has a significant impact on a considerable number of individuals. Consequently, the study, analysis, and characterization of this pathology are of paramount importance. Electroencephalography (EEG) is frequently utilized in the diagnostic assessment of various brain disorders due to its non-intrusiveness, excellent resolution and ease of placement. However, the manual analysis of electroencephalogram (EEG) recordings can be a complex and time-consuming task for healthcare professionals. Therefore, the automated analysis of EEG recordings can help alleviate the burden on doctors and provide valuable insights to support clinical diagnosis. Many studies are working along these lines. In this research paper, the authors propose a machine learning (ML) method based on the eXtreme Gradient Boosting (XGB) algorithm for analyzing EEG signals. The study compares the performance of the proposed XGB-based approach with four other supervised ML systems. According to the results, the proposed XGB-based method demonstrates superior performance, with an AUC value of 0.94 and an accuracy value of 0.94, surpassing the other compared methods. The implemented system exhibits high accuracy and robustness in accurately classifying schizophrenia patients based on EEG recordings. This method holds the potential to be implemented as a valuable complementary tool for clinical use in hospitals, supporting clinicians in their clinical diagnosis of schizophrenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助闻元杰采纳,获得10
刚刚
LIU发布了新的文献求助10
1秒前
花啊拾肆发布了新的文献求助10
2秒前
桐桐应助怡然的烤鸡采纳,获得10
3秒前
3秒前
xiang发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
5秒前
6秒前
qiaozhi乔治完成签到,获得积分20
6秒前
buerjia完成签到,获得积分10
7秒前
如意草丛完成签到,获得积分10
7秒前
Meloqi完成签到,获得积分10
7秒前
7秒前
月白完成签到 ,获得积分10
8秒前
qiaozhi乔治发布了新的文献求助20
9秒前
佳妮发布了新的文献求助10
9秒前
9秒前
凉白开发布了新的文献求助10
10秒前
LIU完成签到,获得积分10
10秒前
月白关注了科研通微信公众号
11秒前
AAA发布了新的文献求助10
12秒前
闻元杰发布了新的文献求助10
13秒前
hysmoment发布了新的文献求助10
14秒前
yu发布了新的文献求助10
15秒前
16秒前
17秒前
你好好好完成签到,获得积分10
17秒前
KK关闭了KK文献求助
18秒前
changye完成签到,获得积分20
18秒前
华子的五A替身完成签到,获得积分10
19秒前
20秒前
汉堡包应助qian采纳,获得10
21秒前
星辰大海应助懵懂的灭男采纳,获得10
22秒前
鲸鱼发布了新的文献求助10
23秒前
23秒前
24秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814553
求助须知:如何正确求助?哪些是违规求助? 3358709
关于积分的说明 10397030
捐赠科研通 3076053
什么是DOI,文献DOI怎么找? 1689681
邀请新用户注册赠送积分活动 813195
科研通“疑难数据库(出版商)”最低求助积分说明 767514