清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Identification of plasma protein biomarkers for endometriosis and the development of statistical models for disease diagnosis

子宫内膜异位症 逻辑回归 医学 人口 接收机工作特性 内科学 疾病 环境卫生
作者
Elizna M. Schoeman,Scott Bringans,Kirsten E. Peters,Tammy M. Casey,Christina E. Andronis,Liqing Chen,Marisa N. Duong,Jane E. Girling,Martin Healey,Berin A. Boughton,Deem ISMAIL,Jun Ito,Connor Laming,Hyunjung Jade Lim,M Mead,Mufaidha RAJU,Puay Hoon Tan,Richard Lipscombe,Sarah J. Holdsworth‐Carson,Peter A. W. Rogers
出处
期刊:Human Reproduction [Oxford University Press]
被引量:4
标识
DOI:10.1093/humrep/deae278
摘要

Abstract STUDY QUESTION Can a panel of plasma protein biomarkers be identified to accurately and specifically diagnose endometriosis? SUMMARY ANSWER A novel panel of 10 plasma protein biomarkers was identified and validated, demonstrating strong predictive accuracy for the diagnosis of endometriosis. WHAT IS KNOWN ALREADY Endometriosis poses intricate medical challenges for affected individuals and their physicians, yet diagnosis currently takes an average of 7 years and normally requires invasive laparoscopy. Consequently, the need for a simple, accurate non-invasive diagnostic tool is paramount. STUDY DESIGN, SIZE, DURATION This study compared 805 participants across two independent clinical populations, with the status of all endometriosis and symptomatic control samples confirmed by laparoscopy. A proteomics workflow was used to identify and validate plasma protein biomarkers for the diagnosis of endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS A proteomics discovery experiment identified candidate biomarkers before a targeted mass spectrometry assay was developed and used to compare plasma samples from 464 endometriosis cases, 153 general population controls, and 132 symptomatic controls. Three multivariate models were developed: Model 1 (logistic regression) for endometriosis cases versus general population controls, Model 2 (logistic regression) for rASRM stage II to IV (mild to severe) endometriosis cases versus symptomatic controls, and Model 3 (random forest) for stage IV (severe) endometriosis cases versus symptomatic controls. MAIN RESULTS AND THE ROLE OF CHANCE A panel of 10 protein biomarkers were identified across the three models which added significant value to clinical factors. Model 3 (severe endometriosis vs symptomatic controls) performed the best with an area under the receiver operating characteristic curve (AUC) of 0.997 (95% CI 0.994–1.000). This model could also accurately distinguish symptomatic controls from early-stage endometriosis when applied to the remaining dataset (AUCs ≥0.85 for stage I to III endometriosis). Model 1 also demonstrated strong predictive performance with an AUC of 0.993 (95% CI 0.988–0.998), while Model 2 achieved an AUC of 0.729 (95% CI 0.676–0.783). LIMITATIONS, REASONS FOR CAUTION The study participants were mostly of European ethnicity and the results may be biased from undiagnosed endometriosis in controls. Further analysis is required to enable the generalizability of the findings to other populations and settings. WIDER IMPLICATIONS OF THE FINDINGS In combination, these plasma protein biomarkers and resulting diagnostic models represent a potential new tool for the non-invasive diagnosis of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) Subject recruitment at The Royal Women’s Hospital, Melbourne, was supported in part by funding from the Australian National Health and Medical Research Council (NHMRC) project grants GNT1105321 and GNT1026033 and Australian Medical Research Future Fund grant no. MRF1199715 (P.A.W.R., S.H.-C., and M.H.). Proteomics International has filed patent WO 2021/184060 A1 that relates to endometriosis biomarkers described in this manuscript; S.B., R.L., and T.C. declare an interest in this patent. J.I., S.B., C.L., D.I., H.L., K.P., M.D., M.M., M.R., P.T., R.L., and T.C. are shareholders in Proteomics International. Otherwise, the authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助狮山教授采纳,获得50
2秒前
8R60d8应助lulu采纳,获得10
5秒前
20秒前
研友_nvGy2Z发布了新的文献求助10
23秒前
35秒前
KKLUV发布了新的文献求助50
42秒前
赵李锋完成签到,获得积分10
1分钟前
naczx完成签到,获得积分10
1分钟前
CarolineSH完成签到 ,获得积分10
1分钟前
Emperor完成签到 ,获得积分10
1分钟前
徐团伟完成签到 ,获得积分10
1分钟前
朴实乐天完成签到,获得积分10
1分钟前
CC完成签到 ,获得积分10
1分钟前
1分钟前
John完成签到 ,获得积分10
1分钟前
Icey发布了新的文献求助10
1分钟前
zhangjianzeng完成签到 ,获得积分10
1分钟前
JJ完成签到 ,获得积分0
2分钟前
creep2020完成签到,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
WSY完成签到 ,获得积分10
2分钟前
在水一方应助Icey采纳,获得10
2分钟前
Hiram完成签到,获得积分10
2分钟前
科研通AI6应助KKLUV采纳,获得10
2分钟前
宋超完成签到,获得积分10
3分钟前
火星上惜天完成签到 ,获得积分10
3分钟前
酷波er应助科研通管家采纳,获得10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
王雨薇发布了新的文献求助10
4分钟前
思维隋完成签到 ,获得积分10
4分钟前
王雨薇完成签到,获得积分10
4分钟前
nihaoxjm发布了新的文献求助10
5分钟前
华仔应助nihaoxjm采纳,获得10
5分钟前
开心每一天完成签到 ,获得积分10
5分钟前
lbm完成签到,获得积分10
5分钟前
浮游应助科研通管家采纳,获得10
6分钟前
Oliver完成签到 ,获得积分10
7分钟前
zxq完成签到 ,获得积分10
7分钟前
粗心的飞槐完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4742220
求助须知:如何正确求助?哪些是违规求助? 4092072
关于积分的说明 12657178
捐赠科研通 3802994
什么是DOI,文献DOI怎么找? 2099560
邀请新用户注册赠送积分活动 1125056
关于科研通互助平台的介绍 1001003